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presents and demonstrates a technique aimed at improving 
the success of developing world engineering projects. Flex-
ibility and adaptability minimize the impact of uncertain-
ties, and are enabled by numerically optimized amounts of 
designed-in excess. A sensitivity analysis performed on the 
system model helps the designer prioritize the set of uncer-
tain requirements and parameters for refinement. The tech-
nique is demonstrated in the design of a cookstove intended 
for use in the developing world.

Keywords Developing world · Excess · Evolvability · 
Adaptability · Reconfigurability · Reconfigure · System 
design · Improved cookstove

List of symbols
k  Known requirements
u  Uncertain requirements
d  Design parameters
x  Excess
�  Known requirement function
�  Uncertain requirement function
b  Benefit of uncertain requirements
F  Benefit factors
p  Probabilities of uncertain requirements
�  Benefit function or uncertain requirements
c  Cost of excess capabilities
M  Cost factors
�  Cost function of excess capabilities
V  Value function for optimization
g  Constraints for optimization

Abstract Products designed for the developing world 
often go unused or underused by the intended customers. 
One cause of this problem is uncertainty regarding the 
actual requirements of customers in the developing world. 
This can result when designers, with experience in techno-
logically advanced countries, apply their own value struc-
ture to the products they design. Because of the designers’ 
lack of experience in the culture and environment of the 
developing world, the actual requirements are only par-
tially known to them. This problem can be mitigated by (i) 
optimizing product flexibility and adaptability to react to 
uncertain requirements, and (ii) reducing the most critical 
uncertainties. The flexibility of a product to adapt to new or 
changing requirements has been shown to extend the ser-
vice life of large complex engineered systems (e.g., aircraft 
carriers, aircraft, communication systems, and space craft). 
These systems must remain in service for extended periods 
of time, even though the environments and requirements 
may change dramatically. Applying these proven tech-
niques to products designed for the developing world can 
alleviate the problem of uncertain requirements. This paper 
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1 Introduction

Today many of the world’s inhabitants struggle to survive 
in a state centuries behind that of the most advanced soci-
eties (Lall 1998). Products and systems that improve the 
health and well-being of the end users, such as products 
that deliver clean water, medical care, and clean energy, 
are desperately needed. Unfortunately attempts to provide 
these products and systems are hampered by low long-term 
adoption rates (or premature obsolescence) (Free 2004; 
Hammond 2004). While there are a variety of issues that 
influence the success of a product including social, politi-
cal, engineering, and environmental issues, one of the 
most significant is uncertainty regarding the requirements 
(Campbell and Vainio-Mattila 2003; Chavan et  al. 2009). 
There are three causes of uncertain requirements (i) inad-
equate understanding, (ii) incomplete information, and (iii) 
conflicting performance alternatives (Lipshitz and Strauss 
1997). These uncertainties can result in products that fail 
to be adopted initially or suffer prematurely obsolescence. 
Some historical examples include primary health care sys-
tems, clean water delivery systems, and improved cook-
stoves (Free 2004; Pine et al. 2011).

In search of potential solutions, we can turn to complex 
engineered systems. Avoiding premature obsolescence has 
been a topic of interest for large complex systems (i.e. air-
craft carriers, warplanes, etc.) (Saleh and Hastings 2000). 
As an illustration, consider the C-130 aircraft, which was 
originally designed in the early 1950s as a military cargo 
and troop carrier (Smith 2001; Tackett et  al. 2014; Bow-
man 1999). Since its first flight in 1954 it has undergone 
over 55 adaptations, including maritime patrol and rescue, 
electronic warning and control system, aerial refueling, 
and even a gun ship. Today, with over 2000 aircraft in ser-
vice, the C-130 remains a vital military aircraft. Because 
of its ability to apply excess capability to address new and 
changing requirements, the C-130 has exceeded service-life 
expectations. By contrast the F-117, which was introduced 
in 1983 for a very specific type of mission, was retired just 
25 years later in 2008. Unlike the C-130, the F-117 did not 
demonstrate the ability to adapt to new and changing mis-
sions (Ireton 2006).

Examining large complex engineered systems, we can 
see that the addition of strategically placed excess capa-
bility can enable a design to adapt to new, changing or 
uncertain requirements (Hu and Cardin 2015). The authors 
of this paper have written three previous papers regarding 
evolvability and excess capability in complex engineered 
systems. Those papers address two aspects of evolvabil-
ity: (i) that evolvability can be numerically evaluated by 
considering the usability of excess within a design (Allen 
et al. 2016; Tackett et al. 2014), and (ii) that excess can be 
optimized to increase the evolvability of a product (Watson 

et  al. 2016). While the current paper utilizes the concept 
that excess can be designed into a product to increase the 
flexibility of the design, it is unique because it presents a 
technique that identifies for the designer which assump-
tions must be refined in the context of optimizing the prod-
uct for uncertain requirements.

Given the work, by the authors and other researchers, 
directed at complex engineered systems, two research ques-
tions come to mind. The first question is: how can the pres-
ence (location and quantity) of excess be added to a simple 
design, targeted at users in the developing world, with the 
intent of improving its success and long-term adoption? 
A second question is: can numerical search and sensitiv-
ity analysis be used to analyze and provide insight into 
identifying and resolving the most critical uncertainties? 
This paper seeks to answer these questions by presenting a 
numerical technique that is shown to improve the long-term 
adoptability of products designed for the developing world. 
The technique efficiently identifies a path to prioritize for 
refinement the uncertain requirements and parameters. The 
impact of uncertainties are further mitigated by flexibility 
and adaptability that are optimally designed-in by the addi-
tion of excess. While this technique is not limited to devel-
oping world applications, it is well suited to address issues 
resulting from a geographic or cultural separation between 
designers and customers.

2  Review of related work

We begin this section by reviewing literature specifically 
directed at creating products for the developing world. 
Then we transition to the more general topics of flexibility 
and uncertainty in engineered designs.

The developing world represents a large percentage of 
the world’s population. The United Nations has developed 
the Millennium Development Goals to highlight the needs 
of this portion of the world. A report by Annan (2005) 
describes these goals and the current barriers to achieve 
them. The inability to transfer technology and innovation 
from developed countries has been identified as a main 
barrier (Binagwaho and Sachs 2005). Studies indicate that 
only a small percentage of products introduced into the 
developing world succeed (Austin-Breneman and Yang 
2013) as compared to a much larger success rate in more 
advanced countries (Cooper and Kleinschmidt 2011).

Why does this difference in success rates exist? Matt-
son et  al. (2016) indicate these differences stem from the 
socioeconomic and technical differences between the socie-
ties. These differences can result from deeply held assump-
tions by engineers regarding what is needed in the devel-
oping world, such as that only simple solutions are needed 
or that the need for an inexpensive solution eliminates the 
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opportunity for companies to make an attractive profit. 
Even when the basic need area is simple, the specific 
requirements regarding the engineered solution may be 
and often are complex. Mattson and Winter further point 
out that modern development methods have been shaped by 
the kinds of problems faced in the developed world. New 
evolutionary paths may be needed to arrive at development 
methodologies suitable for solving the problems facing the 
developing world. To that end, several new techniques and 
methodologies can be found in the literature.

In the business literature, the market represented by the 
developing world has been described as the “Bottom of the 
Pyramid” (Prahalad and Hart 2002). It has been shown that 
there is a “potential of serving” this “unserved market and 
alleviating the level of global poverty while still earning a 
profit” if the adoption barriers can be overcome (Pitta et al. 
2008). Many methodologies and proposals have been intro-
duced in an effort to increase the acceptance of new prod-
ucts and technologies by those in the developing world. 
These methodologies include (a) “Customer Value Chain 
Analysis” (Donaldson et  al. 2006), (b) a product service 
system approach (Schafer et al. 2011), (c) design for emerg-
ing markets guidelines (Chavan et  al. 2009; Kang et  al. 
2014), (d) design for sustainable development guidelines 
(Ngai et al. 2007), and (e) design for the base of the pyra-
mid (Whitney and Kelkar 2004). The main focus of these 
methods is to identify requirements. They do not identify 
nor analyze uncertainties and as is often the case in design 
tasks, uncertainty remains and the problem of new products 
and technologies failing to meet the needs of the develop-
ing world continues to exist (Bell and Pavitt 1997). This 
problem is not necessarily an indication that these methods 
have failed. Determining requirements is an expensive pro-
cess, the cost of which is proportional to the accuracy of 
the information. As noted in Sect. 1, this paper presents a 
technique to guide the designer to the requirements need-
ing the highest level of attention. This enables the designer 
to focus on the most critical requirements resulting in an 
improved product while minimizing development costs.

Uncertain requirements have been highlighted as a key 
contributor to the technology transfer or adoption barrier 
(Bell and Pavitt 1997; Campbell and Vainio-Mattila 2003; 
Chavan et  al. 2009; Kang et  al. 2014; Ramamurti 2009). 
Separation, both geographically and culturally, between 
the designers and customers has been identified as the most 
significant cause of uncertainty (Donaldson 2009; Fathers 
2003). When designers are geographically or culturally 
separated from customers, important preferences regarding 
requirements can be misunderstood, or omitted. It should 
also be noted that even designers living in the developing 
world might misunderstand or be unaware of important 
requirements (Sheffield and Lin 2013). The premise of this 
paper is that the impact of these uncertain requirements can 

be mitigated by an efficient technique to identify, resolve, 
and adapt to the most critical uncertainties (Li et al. 2008).

Again turning to similar conditions, designers of large 
complex engineered systems have utilized adaptabil-
ity to prolong their systems’ service life (Bloebaum and 
McGowan 2012). Examples of systems that employ some 
type of adaptability to increase their success rates and pro-
long their service life include communication networks, 
commercial aircraft, ocean vessels, telecommunication sat-
ellites, and military weapon systems. While these systems 
are generally complex and expensive (in terms of devel-
opment and production), it is possible to employ the same 
techniques on simpler less expensive products.

Many methodologies are used in the development of 
large complex systems to increase success rates and extend 
service life. Commonly used terms to describe these meth-
odologies include: changeable, reconfigurable, transform-
able, adaptable and flexible. These terms have been defined 
and differentiated in a paper by Ferguson et  al. (2007). 
Changeable is defined as the most general of these terms, 
referring to systems, which undergo any type of change, for 
any reason. Reconfigurable and transformable are used to 
describe systems, which are capable of undergoing repeat-
able and reversible change. Adaptable is used to describe 
systems that change in response to varying conditions or 
requirements while in service. Adaptable systems are not 
restricted to making only repeatable or reversible changes. 
Systems that do not require a change to accomplish mul-
tiple requirements are referred to as flexible systems. This 
paper focuses on developing flexible and adaptable systems 
to address requirement uncertainties.

Engel and Browning have presented a “model to assess 
the value of architecture adaptability” known as Architec-
ture Option (AO) theory (Engel and Browning 2008). It 
has recently been refined by Engel and Reich (2015). The 
model is based on a financial analysis of the product design 
alternatives. It utilizes real options theory to assess the 
alternatives. The model can incorporate a wide variety of 
financial inputs and is, therefore, an excellent tool to deter-
mine the degree to which adaptability is appropriate and 
generally how can it be achieved.

Change is critical to adaptive systems (Siddiqi et  al. 
2011). Jarratt et  al. have presented an overview of pub-
lished material on engineering change (Jarratt et al. 2011). 
They categorize key aspects, methods and tools for manag-
ing change. Keese et al. (2006, 2009) have presented sev-
eral papers outlining methods to characterize the flexibility 
of a system based on impact of change throughout the sys-
tem, using “Enhanced Change Modes and Effect Analysis” 
(CMEA). In a similar vein, several papers have been writ-
ten on the propagation of change through a system (Pas-
qual and de Weck 2012; Hamraz et al. 2013, 2012; Giffin 
et al. 2009). These papers provide valuable insight into the 
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impact of change (during the design, manufacturing and 
in-service phases). However, they do not present a direct 
method to construct a numerical model of the product 
based on part and subassembly parameters. The numerical 
model presented in this paper is a direct translation of the 
requirements in terms of product parameters. It enables the 
optimization of the product based on the customer’s values 
and the analysis of the uncertainties.

Change and adaptability require flexibility in a prod-
uct or system (Niese and Singer 2014; Luo 2015). There 
are a number of papers proposing frameworks, guidelines 
and methodologies to manage the design of flexibility 
within a system. Saleh and Hastings (2000) and Olewnik 
et al. (2004) focus on determining when and how to embed 
flexibility. The authors of this paper (Allen et  al. 2016; 
Tackett et  al. 2014; Watson et  al. 2016) use the concept 
of designed-in excess to provide systems with increased 
flexibility. Tilstra et  al. have presented several papers on 
the value of system flexibility and associated design guide-
lines (Tilstra et  al. 2009, 2012, 2015). They incorporate 
“High Definition Design Structure Matrix” (HDDSM) and 
“Change Modes and Effect Analysis” as tools to accom-
plish this. The HDDSM and the CMEA tools provide an 
excellent visualization of the impact of adaptability and 
change, but they do not lead directly to a numerical model 
of the product suitable for optimization.

Robustness is another import attribute sought by design-
ers of complex engineered systems. Robustness methodolo-
gies are often used to desensitize a product to uncontrolled 
variations, such as manufacturing tolerance or changes in 
environmental conditions (Du and Chen 2000). Recogniz-
ing that robustness is often limited to resilience to noise, 
Ziv Av and Reich have presented a method for dealing with 
the broader perspective of robustness including customer 
requirements and market conditions. Their method, known 
as Subject Objective System (SOS) was presented in Ziv-
Av and Reich (2005) and refined in Reich and Ziv  Av 
(2005). The SOS method uses a scalable structure similar 
to the Quality Function Deployment—House of Quality 
approach presented by Akao (1994). Because of its scal-
able nature and ability to include many types of inputs, 
SOS can be used at several points in the design process. 
It is especially appropriate during the conceptualization 
phase. However, as with other approaches, it does not lead 
directly to a detailed numerical model of the system based 
on design parameters.

From the literature we see that flexibility, adaptabil-
ity, change, and robustness are important topics related 
to engineered systems. The methodology and guidelines 
presented provide excellent visualization of design alter-
natives and their impacts, but generally do not provide a 
simple method to develop a numerical model of the prod-
uct nor do they identify critical uncertainties. There is a 

common message from the published material that flex-
ibility and future adaptability are often very desirable 
product attributes. In this paper, a technique utilizing a 
numerical model is employed to strategically design-in 
excess capabilities while dealing with uncertain require-
ments. Thus, enabling product flexibility and adaptability 
and as a result improving the probability of adoption by 
the customer.

3  A new technique to optimize a product 
with uncertain requirements

Designers faced with creating products for the develop-
ing world can benefit from a technique that increases the 
success rate and long-term utilization of their products. 
Two objectives of this technique are to provide a process 
for (i) optimizing excess capability included in the prod-
uct for flexibility, or adaptability and (ii) dealing with 
the uncertainty of the requirements and assumptions. 
The following technique allows the designers to make 
gross approximations in creating a preliminary numerical 
model. The process then analyzes these assumptions in 
terms of their impact on the value of the design. Through 
the recursive process critical assumptions are refined and 
improved.
Once a numerical model of the product is created, 
designed-in excess capabilities are optimized and a sen-
sitivity analysis is performed on the assumptions to 
determine their suitability. The assumptions are catego-
rized into four groups as shown in Fig. 1. Assumptions in 
quadrants 1–3 either are accurate (i.e., high confidence) 
or do not appreciably affect the value of the product (i.e., 
low sensitivity). The sensitivity analysis identifies the 
assumptions in quadrant 4 (i.e., high sensitivity and low 
confidence) thus providing guidance as to which assump-
tions require further study (i.e., higher confidence levels). 
Once the confidence level of indicated assumptions has 
been improved, the process is repeated.

Six steps are used to perform this process (see Fig. 2). 
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Fig. 1  The relationship between the confidence and sensitivity of 
assumptions is presented. Assumptions with low confidence and high 
sensitivity are highlighted in quadrant 4 (in yellow) and are the focus 
of this paper. (Color figure online)
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Step 1  Define the design based on known and uncertain 
requirements

Step 2  Determine the value functions, constraints, and 
confidence levels of assumptions

Step 3  Perform optimization
Step 4  Perform sensitivity analysis
Step 5  Assess the sensitivity and confidence levels
Step 6  Improve the confidence levels of critical assump-

tions (in quadrant 4 of Fig. 1). Then repeat steps 
1–6 until adequate confidence levels are achieved

In this section, each of these steps is explained in detail.

3.1  Step 1: Define the initial design based 
on requirements

The first step in Fig. 2 is to define the initial design based 
on the requirements of the product. Those requirements 
that are virtually certain are referred to in the paper as 
known requirements (kj). Other requirements, with more 
uncertainty, are referred to as uncertain requirements (un). 

Start

End

kj= ζj(d) for all j 
un = ηn(x, d) for all n
Probability of un: pn

i = 1

bn = βn(F, un , pn ) = βn(F, ηn(x, d), pn ) for all n
cl = γl(M, xl , p) for all l

V = ∑ bn  -  ∑ cl               n                  l

Constraints (g ≤ 0)
Low confidence assumptions (d', p', F', M', g')

Sensitivity Analysis 
∂V/∂d, ∂V/∂p, ∂V/∂M, ∂V/∂F, ∂V/∂g

Are any 
assumptions 

low confidence
 (i.e., dcc/drc ≤1)

and high 
sensitivity?

Improve 
Assumptions
d, p, F, M, g

i = i + 1

N

Y

maximize V

subject to g ≤ 0
x

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 1. Define the initial design based 
on requirements. Each requirement (r j, un) 
is modeled numerically as a function (ζ j, ηn) 
of the design parameters (d, x).

Step 2.  Determine value function (V), 
constraints (g ≤ 0), and confidence levels 
(d', p', F', M', g').   The value function is 
based on the benefit (bn) and cost (cl) of each 
requirment and stated in terms of the design 
parameters, marketing and cost factors.

Step 3.  Perform numerical optimization.

Step 4. Perform sensitivity analysis.  
The sensitivity of the optimized solution 
to individual assumptions is determined.

Step 5. Assess sensitivity and confidence.
Assumptions with high sensitivity and 
low  confidence are identified (see fig. 1).  

Step 6.  Improve confidence levels of 
critical assumptions.  Assumptions with 
the highest sensitivity and lowest 
confidence are improved. 

Flowchart Algorithm

Fig. 2  Flowchart and corresponding algorithm to optimize excess capability in a product with uncertain requirements
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If available the probabilities (pn) that the uncertain require-
ments will actually be required are also noted.

The next step is to determine what design parameters 
(d) are necessary for each requirement. These design 
parameters may be geometric positions, material proper-
ties or other design properties. Excess (x) associated with 
each design parameter is used as the design variable for the 
uncertain requirements. In the optimization step described 
in Sect. 3.3, the optimization variables are the elements of 
the excess (x) array, and the design parameters are the ele-
ments of the d array. Each known requirement (kj) is mod-
eled as a function (�j) of the design parameters. Similarly 
each uncertain requirement (un) is modeled as a function 
(�n) of the design parameters (d), and corresponding excess 
(x).

Each of the arrays noted above (kj, un, pn, d, and x) are 
of one dimension, the length of which is dependent on the 
number requirements and parameters being used. There is 
a one to one relationship between the elements of u and p 
and between the elements of d and x. The functions �j and 
�n can be considered as one-dimensional arrays of functions 
with each element �j associated with a known requirement 
and each element �n associated with an uncertain require-
ment. When the designer does not have high confidence 
in some of the parameters used to create the numerical 
model of the product, it is part of the technique to use esti-
mates. The impact of these estimates is assessed in steps 4 
and 5 (Sects. 3.4 and 3.5). If necessary these estimates are 
improved in step 6 (Sect. 3.6).

3.2  Step 2: Determine the value functions, constraints, 
and confidence levels

The second step in Fig. 2 involves the overall value of the 
product (V), constraints used in optimization, and confi-
dence levels of the assumptions. The overall value of the 
product (V) is a function of the customer-perceived benefit 
obtained from the product when the uncertain requirements 
are satisfied minus the cost to include each excess capabil-
ity. The equation for each customer-perceived benefit (bn) 
can be written as

where F is a matrix of the market factors necessary to 
define the benefit.

If the customer-perceived benefit is expressed as a power 
or Fourier series then all possible curves can be expressed 
by appropriate selection of the coefficients. This is useful 
if the shapes of the curves are uncertain. For example, if 
the benefit of a particular excess capability is believed to 
increase as the quantity of the excess increases, then bn 
could be expressed as a first-order power series, that is, 
a straight line, with a slope and intercept defined by the 

(1)bn = �n(F, un, pn) = �n(F, �n(x, d), pn)

market. In this case F would contain the slope and inter-
cept constants for the line. Higher order coefficients would 
be set to 0 until further study indicates a need for a higher 
order approximation of customer-perceived benefit.

There is generally a cost associated with each excess 
capability. This cost can be calculated based on the design 
parameters, material and manufacturing (or fulfillment) 
costs. An equation for the cost of including each excess 
capability (cl) is written as

where M is a matrix containing the costs factors necessary 
to define the cost of the excess capability.

The overall value is written as

Note that the summation is taken separately on the benefit 
and cost terms. This enables issues associated with redun-
dant costs or coupled benefits to be addressed within the cl 
and bn equations, respectively.

There are often important limitations on a design, such 
as cost, weight, or power consumption. These limits define 
the constraints (g ≤ 0) of the analysis. Care should be taken 
to ensure that these limits are required. Their inclusion 
can severely limit the design options to be identified by 
this analysis (Wassenaar and Chen 2003). The constraints 
(g ≤ 0) are used in step 3, the numerical optimization.

Up to this point, the designer has made a number of 
assumptions in formulating the design problem and in rep-
resenting the overall value of the product. These assump-
tions include the design parameters, the probabilities that 
uncertain requirements will be used, market and cost fac-
tors used in the M and F matrices and the constraints. 
The confidence levels may be very high on some of these 
assumptions (e.g., material costs, and material properties), 
but others can have lower or even very low confidence 
levels.

Confidence levels can be determined by several meth-
ods. For example, in a study on assessing confidence and 
prediction accuracy of designers from different cultures 
and experience levels, Zhang (2015) presents a method of 
determining confidence levels using a Likert scale (e.g., 
1 =  ‘not at all confident’ and 7 =  ‘very confident’) (Lik-
ert 1932). Interestingly, Zhang found that both experienced 
and novice designers are more confident when designing 
for their home market than for a foreign market. In a sense 
the algorithm presented this paper is an extension to the 
work by Zhang. It provides a systematic method to deter-
mine which areas of low confidence should be prioritized 
for further study.

For the purpose of this paper, low confidence assump-
tions are defined as assumptions where the current 

(2)cl = �l(M, x, p)

(3)V =
∑
n

bn −
∑
l

cl
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confidence level is lower than the required confidence level. 
For example, this can be expressed for a design parameter 
(d) as:

where d′
cc

 is the current confidence of the design parameter 
and d′

rc
 is the required confidence of that design parameter. 

If d�
cc
= 50% and d�

rc
= 90%, then d�

cc
∕d�

rc
= 0.56 and the 

assumption is considered low confidence. Similar expres-
sions can be written for each of the assumptions (d, p, F, 
M, and g) used in the numerical model.

The low confidence assumptions are recorded in arrays 
(d′, p′, F′, M′, and g′). It is often impractical or very expen-
sive to achieve high levels of confidence for all of the 
assumptions. This process will aid the designer in select-
ing which of these low confidence assumptions should be 
studied to improve the confidence level and achieve a more 
accurate result.

3.3  Step 3: Perform the numerical optimization

The third step in Fig. 2 is to perform the numerical optimi-
zation. The optimization problem is written as

where x are the design variables (excess), and d are the 
fixed design parameters. V and g are the value function 
and constraint equations defined above. Note the objec-
tive of this optimization is to determine optimal amounts 
of designed-in excess to achieve the highest possible value 
to the customer. The designed-in excess provides flexibility 
and adaptability to respond to uncertain requirements.

3.4  Step 4: Perform the sensitivity analysis

A sensitivity analysis is performed in step 4 of Fig.  2 to 
determine the degree to which the optimized design is sen-
sitive to the low confidence assumptions (d′, p′, F′, M′, and 
g′). The sensitivity analysis can be performed in a number 
of ways. Plots can be made of the overall value (V) as a 
function of perturbation in the assumptions. Changes in the 
value (V) as a function of the assumption under considera-
tion indicates sensitivity to that assumption. This provides 
the designer with a visual understanding of the impact of 
variations in the assumption. Other approaches include cal-
culating the partial derivative or gradient of the value func-
tion with respect to the low confidence parameters (d′, p′, 
F′, M′, and g′). This can quickly indicate to which param-
eters the value function is most sensitive.

(4)
d′
cc

d′
rc

≤ 1

(5)
maximize

x
V(x, d)

subject to g(x, d) ≤ 0

3.5  Step 5: Assess the sensitivity and confidence levels

In step 5 of Fig. 2 a comparison is made between the con-
fidence levels of the assumptions (d′, p′, F′, M′, and g�) 
and sensitivity of the overall value (V). Assumptions with 
low confidence levels and high sensitivity occupy the 
fourth quadrant of Fig.  1. These are the assumptions that 
should be considered for further study. Improving them 
with higher confidence replacements provides the designer 
with a higher level of confidence in meeting the customer’s 
requirements through optimal flexibility and adaptability. 
Because changing the low sensitivity assumptions does not 
noticeably affect the product’s value, the designer does not 
need to invest in improving them.

3.6  Step 6: Improve the confidence level of critical 
assumptions

The purpose of the last step of Fig.  2 (step 6) is to 
improve the assumptions identified in step 5. This tech-
nique provides the designer with guidance in determin-
ing which assumptions require further study and which 
can be accepted as they currently exist. This saves time 
and resources by focusing on improving only assumptions 
that are critical to the value of the product. These assump-
tions can be improved by basic market methodologies (e.g., 
focus studies, surveys, interviews, adjacent product com-
parisons). The technique has pointed the designer toward 
the most useful areas of study. This is especially beneficial 
when gathering market information is time consuming or 
expensive as it is in a developing world setting.

Once high-confidence assumptions have replaced the 
earlier low confidence assumptions, the algorithm can be 
repeated to see if other assumptions should be reviewed. 
This process is repeated until the designer is satisfied with 
the confidence levels of the high-sensitivity assumptions.

4  Demonstration of the technique applied 
to a cookstove

Over the past decade, the topic of improved cookstoves has 
steadily received attention in both peer-reviewed literature 
and other media sources. The reason for such attention is 
that approximately 3 billion people throughout the world 
still cook over an open fire or with other traditional forms 
of biomass cookstoves (IEA 2004). The smoke and pollu-
tion from these fires cause nearly 1.6 million deaths every 
year, contribute to global warming (Edwards et  al. 2003), 
require women to spend long hours gathering fuel (Smith 
et  al. 1993), and in some cases cause local deforestation 
(Gill 1987). One attempted solution to this problem has 
been the design and distribution of improved cookstoves. 



518 Res Eng Design (2017) 28:511–527

1 3

When designed correctly, these improved cookstoves are 
capable of reducing emissions by 90% and reducing fuel 
consumption by nearly 50% (Charron 2005).

However, as with many other products designed for the 
developing world, the majority of these improved cook-
stoves have not been adopted and have only been used at 
surprisingly low rates. Such low rates can be due to the 
improved cookstoves not meeting the current, or future 
requirements of the users (Garcia-Frapolli et al. 2010; Pine 
et al. 2011; Simon et al. 2012). The technique described in 
this paper can potentially help resolve these issues.

4.1  Step 1: Define the initial cookstove design based 
on requirements

A cookstove can be a significant advancement from cook-
ing over an open fire. It can be more efficient in terms of 
temperature control, heat containment and fuel consump-
tion (Ballard-Tremeer and Jawurek 1996; Boy et al. 2000). 
An example of this type of cookstove is the Proleña Eco-
fogon cookstove pictured in Fig.  3. As noted by Terrado 
(2005) Proleña is “an active NGO specializing in fuel wood 
issues that has had a long presence in Nicaragua, Hondu-
ras and other parts of Central America”. The Proleña cook-
stove has been successfully manufactured and sold in Cen-
tral America since the year 2000. A simplified model of 
the Proleña cookstove is used in this paper to illustrate the 
algorithm outline in Sect. 3. The requirements and param-
eters, while realistic and consistent with Proleña stoves are 
selected to illustrate specific points for this example. Note 
that the purpose of this paper is to demonstrate a design 
technique not to present a new cookstove design.

To be adopted and used over time a cookstove must pro-
vide for the basic cooking needs of a family. These needs 
can vary from family to family and for a single family, they 
can vary over time. For example, the available cooking 
utensils, such as pots and pans can vary from family to fam-
ily and over time. Similarly, cooking time and temperature 
can vary from meal to meal. Ergonomic needs (e.g., work 
surface height) may be different from one family to the next 
or even over time for a single family. The size of the family 
is also likely to change over time, increasing or decreasing 
pot size and time spent cooking (Thacker et al. 2014). The 
cookstove must be easy to use and capable of meeting these 
varying needs. If it is adopted and used consistently over 
time, even a simple cookstove design can have an impact 
on a family’s health and economic well-being (Albalak 
et al. 2001; Romieu et al. 2009).

4.1.1  Identify the known requirements of the cookstove

This example uses a very simple cookstove design. The use 
of a simple, though realistic, design is intended to allow the 

reader to focus on the algorithm. The cookstove design has 
three well-understood requirements. 

k1:  cooking surface supports pots, which are 
0.3048  m (12  in.) in diameter (k1: d1 and 
d2 ≥ 0.3048)

k2:  cooking surface temperature is suitable for gen-
eral cooking (k2: cooking surface temperature 
equal to or greater than 478 K or 400 F)

k3:  combustion chamber is large enough to hold suf-
ficient fuel to cook for 30  min without adding 
fuel (k3: d1 × d2 × d3 ≥ 0.0566 m3).

To model the cookstove for these known requirements 
several design parameters must be specified. The design 
parameters can be divided into two groups. The first group 
shown in Table 1 and depicted in Fig. 4 define the geom-
etries of the stove. The second group, shown in Table  2 
includes the thermal and material properties of the design. 
These parameters are used later in this section, in conjunc-
tion with excess capabilities, to create a numerical model of 
the cookstove.

Fig. 3  The Proleña Ecofogon is an example of a cookstove currently 
manufactured and sold in Central America. Reproduced by permis-
sion of the non-governmental organization (NGO) Proleña
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4.1.2  Identify the uncertain requirements of the cookstove

The cookstove design described above, in Fig. 4, Tables 1 
and 2, meets the known requirements. However, there is 
uncertainty in some assumptions and the future needs of 
the customers. Even if these requirements are adequate for 
the initial use of the stove, it is possible that the custom-
ers’ needs may change in the future, and the cookstove will 
need to provide additional capability. If cookstove design-
ers knew exactly what these future requirements were, they 
could simply redesign the entire stove to optimally meet 
those requirements. But in reality there is a large amount 
of uncertainty in predicting future requirements. Therefore, 
it would be advantageous to the designers if they could 
develop a sound base design that meets the current require-
ments, and then explore how excess could be added to 
enhance the cookstove’s flexibility and adaptability. Thus, 
increasing the cookstove’s chances of meeting both current 
and possible future requirements.

Four additional (potential) customer requirements have 
been selected to demonstrate the use of uncertain require-
ments in this example. 

u1:  a larger cooking surface area
u2:  an ability to cook at higher temperatures
u3:  a larger combustion chamber, in which greater 

amounts of fuel can be inserted at one time
u4:  an ability to add legs to the cookstove.

These uncertain requirements can be described numer-
ically using the design parameters (d) noted above and 
corresponding excess (x). Excess is not applied to most of 
the design parameters; however, excess will be required 
as follows 

x1:  excess width of the cookstove
x2:  excess length of the cookstove
x3:  excess height of the cookstove
x4:  excess thickness of insulation
x5:  excess thickness of steel
x6:  excess material and attachment features to allow 

for the addition of legs (to elevate the stove off 
the ground).

Width (d1)
H

ei
gh

t (
d 3

)

Steel
Sidewalls

with 
Insulation

and Steel Floor

Insulation

Length (d 2
)Iron 

Cooktop

Leg
Attachment

Feature

Legs

Fig. 4  Simplified model of the cookstove that will be optimized for 
flexibility and adaptability

Table 1  Original cookstove dimensions

Original stove dimensions

Width (d
1
) Length (d

2
) Height (d

3
) Insulation thickness (d

4
) Steel structure thickness (d

5
)

0.3048 m (12 in.) 0.6096 m (24 in.) 0.3048 m (12 in.) 0.0 m 1.519e−3 m (16 ga. 0.060 in.)

Table 2  Thermal, material and cost properties of the cookstove

Thermal properties
Energy of combustion (w) 2000
Temperature ambient (K) 303
Conduction
Iron (w/m-K) 55
Steel (w/m-K) 35
Insulation (w/m-K) 0.04
Convection/radiation
Cook surface (w/m2 K) 20
Stove sides (w/m2 K) 10
Stove bottom (w/m2 K) 11
Densities
Iron (kg/m3) 7300
Steel (kg/m3) 7850
Cost factors
Iron ($/kg) 1.248
Steel ($/kg) 2.819
Insulation ($/m3) 10.000



520 Res Eng Design (2017) 28:511–527

1 3

For the remainder of this article, these six excesses are 
referred to as the design variables. It is important to note 
that all of these elements of excess are continuous variables 
except x6, which is a discrete variable that can exist only in 
certain states. These states are described later in this section.

4.1.3  Determine the probabilities associated 
with the uncertain requirements

Probabilities are used in a numerical model of requirements 
that can be achieved through a change in the product during 
its service life. In this case, the addition of legs are a good 
example of an adaptation, which can be partially included 
during the initial design, and completed at some time after 
the product has been sold. It is an uncertain requirement. 
Therefore, the probability that legs will be required is set, as a 
rough estimate or starting point, at 70%. This assumption will 
be assessed and refined if necessary during Sects. 4.4–4.6.

4.1.4  Develop the numerical model of the cookstove

The equations for the uncertain requirements are determined 
using well-understood geometric or thermal relationships. To 
maintain focus on the technique presented herein the equa-
tions are summarized without derivation.

The first uncertain requirement is for a larger cook surface 
area (to accommodate a larger number or size of pot). It is 
a function of the cookstove width, length and the associated 
excess as shown below

where u1 is the increase in cook surface area. The original 
cookstove width and length are d1 and d2, respectively. The 
excess width and length are x1 and x2.

The equation for increasing the combustion chamber vol-
ume is similar.

where d3 and x3 are the original and excess cookstove 
height, respectively.

The equation for increasing the cook surface temperature 
(u3) is much more complicated. It is a recursive function of 
the design parameters (d) including geometric, thermal, and 
material properties and the excess quantities (x). The actual 
equations used in the optimization and sensitivity analysis are 
presented in Sects. 4.3 and 4.4. However, because developing 
thermal models is not the focus of this paper and for brevity 
they are referred to here simply as

The last uncertain requirement, presence of legs (u4), is 
discrete, as mentioned previously. This requirement is 
expressed as states of the cookstove as originally sold:

(6)u1 = (d1 + x1)(d2 + x2) − (d1)(d2)

(7)u2 = (d1 + x1)(d2 + x2)(d3 + x3) − (d1)(d2)(d3)

(8)u3 = �3(x, d)

To attach legs to the cookstove, the states must occur in the 
order outlined above.

State 1 can only be designed-in as excess during the ini-
tial manufacturing of the stove, but states 2 and 3 can either 
be initially designed-in or retrofitted at some later time. If 
the additional steel thickness is not included initially in the 
design, then there is no possible way to retrofit at a later 
time and evolve to having legs.

Equations  (6)–(9) represent a numerical model for the 
uncertain requirements of the cookstove.

4.2  Step 2: Determine the value functions, constraints, 
and confidence levels for the cookstove

The value of the excess capabilities applied to the cook-
stove is a function of the benefit perceived by the customer 
of the uncertain requirements minus the cost of the excess 
required to achieve them, as indicated in Eq. (3).

4.2.1  Determine the benefit of the uncertain requirements

Typically, the benefit of a particular uncertain requirement 
is determined from market studies or designer intuition. For 
this example, three types (or shapes) of benefit functions 
(or curves) are presented as representative typical of benefit 
functions. These equations are generally the result of some 
type of market research.

The benefit of increased cook surface area (b1) is repre-
sented by an inverted parabola, which is translated upward 
and to the right (see Fig.  5a). The apex is the maximum 
benefit of increased cook surface area. The parabola is 
translated to the right until it intersects the origin (no ben-
efit if no increase in cook surface area exists). A familiar 
parabolic form of the equation follows:

In this form the apex is easily located at (0.180,  30.00). 
This curve can also be expressed as a power series, which 
may be more convenient if the shape of the curve must be 
changed.

The shape of the customer-perceived benefit curve for 
increased combustion chamber volume (b2) is similar to 

(9)

u4 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

State 0: no leg features

State 1: only increased steel structure thickness

State 2: increased steel structure thickness

and mounting features

State 3: full leg implementation (increased steel

structure, mounting features and legs)

(10)b1 = −925.9(u1 − 0.180)2 + 30.00

(11)b1 = 30.00u1 − 925.9u2
1
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that of increased cook surface area as shown in Fig. 5b. It 
can be expressed in the familiar parabolic form, with the 
apex at (0.600, 30.00):

It can also be expressed in the form of a power series as:

The benefit of increasing cook surface temperature is rep-
resented for this example as a different shape. It is shown, 
in Fig. 5c as an exponential curve, which begins at the ori-
gin and proceeds up and to the right toward an exponential 
maximum.

A power series approximation of the equation for the ben-
efit of increased cook surface temperature is

The benefit of legs is represented by a relatively simple 
function. The expected value of legs is the product of the 
value of legs and the probability that they are required.

where p is the probability that legs will be required. In this 
example an estimate of p = 70% is used as a starting point. 
Sensitivity analysis discussed in Sects. 4.4 and 4.5 is used 
to evaluate if this estimate is sufficient.

(12)b2 = −83.33(u2 − 0.600)2 + 30.00

(13)b2 = 100.0u2 − 83.33u2
2

(14)b3 = (−e−u3∕7.5 + 1)(30)

(15)
b3 =4u3 − 2.667e−1u2

3
+ 1.185e−2u3

3
− 3.951e−4u4

3

+ 1.053e−5u5
3
− 2.341e−7u6

3

(16)b4 = p ∗ $30

In this example, the capability of having fully functional 
legs has a value of $30. This is regardless of whether the 
legs are designed-in during the initial manufacturing, or if 
they are added on later during the cookstove’s service life. 
But the expected benefit of having legs is dependent on the 
probability that the legs will actually be needed. Therefore, 
when optimizing the value of the cookstove, the benefit of 
having legs is computed using the Eq. 16.

As mentioned earlier, if the designer is uncertain about 
some of these factors, estimates can be used. These esti-
mates are assessed in steps 4 and 5 (Sects. 4.4 and 4.5) to 
determine if they are adequate, or if they must be refined in 
step 6 (Sect. 4.6).

4.2.2  Determine the cost of the excess capability

There are trade-offs that come with increasing the amount 
of excess capability in any system. These trade-offs come 
in the form of increased costs required to implement the 
excess. In this example, the costs associated with increased 
cook surface (c1), combustion volume (c2) and cooking 
temperature (c3) are modeled based on the increase in steel, 
iron, and insulation. The increase in material cost is calcu-
lated based on the design parameters (d), associated excess 
(x) and cost per unit mass of the material. The cost per unit 
of mass of these materials is presented in Table 2. Though 
this is a major simplification, it is well suited for demon-
stration purposes.

The cost of adding legs is dependent on whether each 
element of the legs is initially designed-in or retrofitted. 
It can cost more to retrofit the attachment features and leg 
extensions than it would be to include them in the initial 
design. The cost of adding legs is also dependent on the 
probability (p) that legs will be needed, and is described by 
the following equation:

where c4 is the expected cost of legs, ce is the cost of the 
designed-in elements and cr is the cost of retrofitted ele-
ments. In this example, the cost to include the attachment 
features in the initial design is $4 and to retrofit is $8. The 
cost of the designed-in leg extensions is $8 while purchas-
ing them as a retrofit is $12. The optimization performed 
in Sect.  4.3 determines the optimal state of the leg addi-
tion, based on the parameters and probability used in the 
model. Sensitivity analysis (Sect. 4.4) of the probability of 
legs being required provides insight into the probability at 
which the additional cost of retrofitted legs is justified.

The overall value of the product is determined using 
Eq.  (3). The sum of the cost equations described above is 
subtracted from the sum of the benefit equations. The result 
is used as the value function in the optimization discussed 
in Sect. 4.3.

(17)c4 = (ce) + (p)(cr)
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4.2.3  Determine the constraints that are applied 
to the optimization problem

For this cookstove example, the only constraint is that the 
maximum cost of adding the excess capabilities must be 
less than $75 (i.e., g ≤ $75).

4.2.4  Determine confidence levels of assumptions

Many of the assumptions used in this example could be of 
low confidence. The designer must identify which factors 
(design parameters, constraints, benefit and cost factors) 
are based on low confidence assumptions. For this exam-
ple, the following are identified as representative low confi-
dence level assumptions.

1. Expressions for the benefits of uncertain requirements 
(b1, b2, b3, and b4), specifically the coefficients on each 
of the terms (12 assumptions—2 each in Eqs.  (11), 
(13), and (16), and 6 in Eq.  (15)). For example, p in 
Eq. (16), the probability that legs are required.

2. Initial stove dimension (3 assumptions—width, length, 
and height)

3. Combustion Energy (1 assumption, the energy sup-
plied by the fire)

4. Maximum cost constraint (1 assumption, $75).

These four sets (totaling 17 assumptions) illustrate a variety 
of low confidence assumptions. They can be categorized 
as low confidence in the: (i) perceived benefit of uncertain 
requirements, (ii) design parameters, (iii) operating or envi-
ronmental conditions, and (iv) constraints. Several of these 
are used later in this example to show how sensitivity anal-
ysis can be used to identify the most critical low confidence 
assumptions.

4.3  Step 3: Perform numerical optimization 
on the cookstove

Now that the value function has been determined (based 
on the benefit and cost functions discussed in Sect. 4.2), 

the optimization can be performed to determine optimal 
excess capabilities using Eq. (5).

The optimization resulted in the addition of excess 
capability to address all four uncertain requirements 
(see Table  3). To achieve this excess capability the cook-
stove width, insulation thickness, and steel thickness are 
increased, and legs are added to the design (see Table 4). 
Figure 6 presents the original parameters of the cookstove 
and the optimized excess to be added. These results are typ-
ical of a variety of different original cookstove geometries.

At this point, two observations can be made. The 
graphical representation (Fig. 6) illustrates both of these 
observations. From the figure it can be seen that

1. Excess tends to be added to move the cookstove to a 
square footprint

2. Excess height is not added.

The tendency toward a square footprint is primarily the 
result of the thermal equations, which are attempting to 
maintain or increase the cook surface temperature, while 
minimizing heat loss through the other surfaces (i.e., 
minimizing the overall surface area of the cookstove). 
Thus, a square footprint is more thermally efficient.

The absence of excess height results from the fact that 
increasing width or length provides both cooking surface 

Table 3  Optimization results for new capabilities

Capability Increase (%)

Optimized excess capability (maxi-
mum cost: $75)

 Cooking surface area 0.0921 m2 49
 Combustion chamber volume 0.0281 m3 49
 Cooking surface temperature 62.5 K 30
 Legs Provided n/a
 Value (V) $42.64

Table 4  Optimization results and the associated design parameters 
for the cookstove

Optimal excess Original dimension

Optimal design variable 
excess (maximum cost: 
$75)

 Width (m) 0.1511 0.3048
 Length (m) 0.0000 0.6096
 Height (m) 0.0000 0.3048
 Insulation thickness (m) 0.0094 0.0000
 Legs attributes
 Steel thickness (m) 2.278e−3 1.519e−3
 Attachment feature Yes No
 Legs provided Yes No
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Fig. 6  Original and excess design parameters optimized for value
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and combustion chamber benefit, while increasing the 
height only provides combustion chamber volume ben-
efit. It also negatively impacts the cook surface tempera-
ture. The value of increasing width and length is greater 
than the value of increasing height. Clearly all six design 
parameters are tightly connected in this example.

4.4  Step 4: Perform sensitivity analysis 
on the cookstove

Sensitivity analysis provides additional insights into the 
optimization. It identifies which assumptions have the 
greatest affect on the optimized value of the cookstove. 
Assumptions with high sensitivity and low confidence can 
be targeted for further study to improve the confidence 
level. Assumptions in quadrants 1, 2, and 3 of Fig. 1 do not 
merit further study at this point. This sensitivity analysis 
is especially valuable when gathering information about 
assumptions is difficult or expensive, as it is in the devel-
oping world. It allows the designer to strategically invest 
in only improving the most critical assumptions. Sensitiv-
ity analysis can be performed by several techniques (e.g., 
gradients, partial derivatives or sensitivity curves). In prac-
tice sensitivity analysis is performed on all low confidence 
assumptions. In this example, 17 assumptions are identified 
as low confidence. To clearly illustrate the algorithm and 
for brevity only five of these assumptions are analyzed in 
detail here. These five assumptions represent each of the 
four types of assumptions described in Sect. 4.2. They are:

1. Perceived benefit of uncertain requirement:

–– Maximum benefit of increased cooking surface area
–– Probability that legs are required (p)

2. Design parameters: initial cookstove dimensions 
(width and length)

3. Operating condition: combustion energy
4. Constraint: maximum added cost.

In this example, sensitivity curves are plotted for the high-
sensitivity, low confidence assumptions. The sensitivity 
analysis revealed that the optimization is not sensitive to

1. Combustion energy (energy supplied by the fire). 50% 
change in the combustion energy assumption results in 
≤0.7% change in the value

2. Initial cookstove dimension (width, and length). 20% 
change in the initial cookstove dimensions results in 
≤1.7% change in the value (see Fig. 7).

However, the value of the optimized product is sensitive 
to

1. Maximum benefit of increased cooking surface area
2. Maximum cost constraint
3. Probability that legs are required

which are discussed below (see Figs. 8, 9, and 10).

4.4.1  Determine the sensitivity to the maximum benefit 
of increased cooking surface area

The sensitivity of the optimization to the assumed maxi-
mum benefit of increased cooking surface area is depicted 
in Fig. 8. The analysis indicates that the optimized excess 
cooking surface area and combustion chamber volume 
are sensitive to this assumption. The excess cooking sur-
face temperature is much less sensitive to this assump-
tion. Therefore, the assumption of the maximum benefit of 
increased cooking surface area has been identified as a can-
didate for further refinement.
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4.4.2  Determine the sensitivity to the maximum cost 
constraint

A sensitivity analysis of the maximum cost constraint pro-
vides interesting results regarding discrete variables (see 
Fig. 9). Observe the variation in the increased capability as 
a function of the maximum cost constraint. As the maxi-
mum cost constraint increases (from $40), the cooking sur-
face area and combustion chamber volume also increase, 
reaching a constant level of $90 at $55. The discrete leg 
capability is excluded until the maximum cost constraint is 
sufficiently high to accommodate its cost. Once the maxi-
mum cost constraint reaches $79 state 3 of the leg option 
becomes possible and the optimization shifts to enable it. 
States 1 and 2 of the leg option are not included because the 
probability of legs being required is set high enough (70%) 
that the incremental cost of retrofitting legs is not justified 
(see Fig. 10). As a result of the addition of legs, at $79 the 
cooking surface area and combustion chamber volume drop 
from 90 to 18% of increased capability. As the cost con-
straint continues to increase, the area and volume begin to 
increase, ultimately reaching a constant level of 66% at $90
. Beyond $90, the constraint is not active and the maximum 

value is $48.43. This is 13% greater than the $42.64 value 
achieved when subject to a $75 cost constraint.

4.4.3  Sensitivity to the probability that legs are required

A study of the sensitivity to the probability that legs 
are required reveals that the optimization is sensitive to 
this assumption. Figure  10 illustrates that the optimiza-
tion is sensitive to the probability that legs are required 
in the range from 63% ≤ p ≤ 68%. However, outside this 
range there is no sensitivity to the probability that legs are 
required.

4.5  Step 5: Assess the sensitivity and confidence levels 
on cookstove

Comparing the sensitivity results discussed in Sect.  4.4 
with the confidence levels recorded in Sect.  4.2, reveals 
that two assumptions should be considered for further study 
to achieve higher confidence levels.

1. Maximum benefit of increased cooking surface are
2. Maximum cost constraint
3. Probability that legs are required.

4.6  Step 6: Improve confidence of specific cookstove 
assumptions

Once the confidence levels have been improved on the low 
confidence assumptions, the steps are repeated. This pro-
cess is continued until no assumptions are detected with 
high sensitivity and unacceptably low confidence level (see 
Eq.  (4)). The result is a cookstove optimally designed for 
flexibility and adaptability based on known and uncertain 
requirements.

The sensitivity analysis identified critical assumptions 
for further study. It also provided insight into what might 
be done to alleviate the impact of these assumptions. For 
example, as seen in Fig. 10, the optimization is only sen-
sitive to the probability that legs are required between 
63−68%. If the designer is confident that the probability 
falls outside this range the assumption can be removed as a 
concern and no further study is required. An important part 
of improving the confidence level of the assumptions is 
often to note the ranges in which the optimization is insen-
sitive to a particular assumption.

4.7  Concluding observations of the cookstove example

This example demonstrates that the technique presented 
in this paper can be applied to a product (cookstove) to 
increase its flexibility and adaptability, in the presence 
of uncertainty. The optimization for excess capability is 
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Fig. 9  To observe the sensitivity to maximum cost constraint, the 
constraint is varied from $40 to $110. Changes in the normalized 
increase in cookstove capabilities are indicated by the vertical axis
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Fig. 10  To observe the sensitivity to the probability that legs are 
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normalized increase in cookstove capabilities are indicated by the 
vertical axis
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performed using estimates for the uncertain parameters and 
assumptions. Sensitivity analysis identifies the most critical 
assumptions for further study and refinement. In this exam-
ple, all four of the uncertain requirements are achieved by 
including some level of excess capability (see Tables 3, 4). 
Sensitivity analysis determines that the optimization is sen-
sitive to two of the uncertain requirements, i.e., maximum 
cost constraint, and the probability that legs are required. 
In addition to identifying these two uncertain requirements 
as critical, regions are identified where the optimization is 
not sensitive to either of them. Once these requirements (as 
well as other low confidence assumptions) have been stud-
ied and refined the algorithm is repeated until the current 
confidence level of the critical requirements is greater than 
the required confidence level (see Eq. (4)). The result is a 
flexible and adaptable design.

5  Concluding remarks

In this paper, a technique is presented for designing prod-
ucts in the presence of uncertainty. It is specifically aimed 
at improving the success of products designed for the 
developing world. The technique optimally determines the 
amount of designed-in excess and resulting flexibility and 
adaptability necessary to respond to uncertain requirements 
and design parameters. The impact of these uncertainties is 
further reduced by a prioritization and refinement process 
which utilizes sensitivity analysis.

An important aspect of the technique is that it pro-
vides a time- and resource-efficient technique for deal-
ing with uncertainty. It is recognized that designers face 
many uncertainties during the design process, especially 
when working in a developing world setting. Uncertain-
ties frequently exist with the product requirements and the 
evaluation of users perception of benefits. Other areas of 
uncertainty are the product design parameters. This tech-
nique allows designers to begin a design with estimates for 
unknown or uncertain parameters. The most sensitive of 
these estimates are identified and refined. As a result of the 
technique designers focus time and resources only on refin-
ing the assumptions that will have a significant impact on 
the value of the product.

There are several ideas presented in this paper that 
merit further study. First, the idea is presented that excess 
capability can contribute to increased success rates and 
prolonged service life of a product in two distinct ways. It 
can be used to increase the flexibility and adaptability of 
the product to meet unforeseen requirements as designed. 
It can also be employed to enable in-service adaptations of 
the product to address changing requirements. There are 
two questions for further study. How should these two dif-
ferent types of excess capability be employed? What factors 

determine which type of excess should be employed in a 
particular design?

A second area involves the coupling between benefits. 
For example, two benefits may be mutually exclusive or 
one benefit may depend on the presence of another. The 
question then follows, what impact do coupled benefits 
have on the value function, benefit or cost equations? Do 
they need to be modified to facilitate analysis of coupled 
benefits?

A study of the application of the technique to actual 
development projects is a third candidate for further study. 
The cookstove example presented in Sect. 4 is a simplified 
example intended to demonstrate the technique. While it is 
based on parameters similar to stoves being produced in the 
developing world, it is not a case study. An extensive case 
study with comparative data would be an excellent oppor-
tunity for further study.

The last area for further study involves uncertainty in 
functions, which are used in the numerical model of the 
product (e.g., customer-perceived benefits). It has been pro-
posed that expressing these functions in the form of power 
or Fourier series allows the shape of the functions to be 
completely altered by adjusting the coefficients of the indi-
vidual terms. In the example, the benefit functions are rep-
resented using a power series. Further study should address 
the question; what form should be used when expressing 
completely uncertain functions, a power series, Fourier 
series or some other form? Answers to these questions will 
strengthen this technique.
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