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Engineering Models for
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Nondeterministic Design
System models help designers predict actual system output. Generally, variation in sys-
tem inputs creates variation in system outputs. Designers often propagate variance
through a system model by taking a derivative-based weighted sum of each input’s var-
iance. This method is based on a Taylor-series expansion. Having an output mean and
variance, designers typically assume the outputs are Gaussian. This paper demonstrates
that outputs are rarely Gaussian for nonlinear functions, even with Gaussian inputs. This
paper also presents a solution for system designers to more meaningfully describe the
system output distribution. This solution consists of using equations derived from a
second-order Taylor series that propagate skewness and kurtosis through a system model.
If a second-order Taylor series is used to propagate variance, these higher-order statis-
tics can also be propagated with minimal additional computational cost. These higher-
order statistics allow the system designer to more accurately describe the distribution of
possible outputs. The benefits of including higher-order statistics in error propagation
are clearly illustrated in the example of a flat-rolling metalworking process used to man-
ufacture metal plates. [DOI: 10.1115/1.4007389]

1 Introduction

A system model uses known system inputs to predict system
outputs. Almost always, variation in system inputs is present,
which also produces variation in system outputs. The system de-
signer is interested in whether or not a system will accomplish the
design objectives even in the presence of this variation. Conse-
quently, a system model that takes a known input distribution and
produces an output distribution may be more helpful than a deter-
ministic model [1].

A statistical error distribution is often obtained by propagating
variance from system inputs to system outputs [2] using Eq. (1),
where the partial derivatives are evaluated at the input mean,
x ¼ �x. This equation is based on a first-order Taylor-series approx-
imation expanded about the input mean, �x. Its derivation and a
more detailed discussion is presented later in this paper
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r2
xi

(1)

It is interesting to note that this formula predicts an output var-
iance r2

y only. Since all higher-order statistics (e.g., skewness,
kurtosis, etc.) are ignored, outputs are usually assumed to be
Gaussian. This assumption is often wrong and does not accurately
reflect reality.

To illustrate this point, consider the simple quadratic function,
y ¼ x2. Assume the input x is a Gaussian distribution with a mean
�x and a standard deviation rx both equal to 1. Equation (1) can be
used to propagate this input distribution through the system model
and predict the Gaussian output distribution shown in Fig. 1(a).

This predicted output is very different from the actual system out-
put distribution, shown in Fig. 1(c). However, if skewness and
kurtosis are also propagated through the system model, the pre-
dicted output distribution (shown in Fig. 1(b)) resembles actual
system output much more closely [3].

This paper discusses statistical error propagation through engi-
neering models. The assumption of Gaussian outputs is dismissed
and a method to more accurately describe an output distribution is
presented. This method relies on second-order Taylor series to
propagate higher-order statistics, such as skewness and kurtosis,
in addition to a mean and variance. By way of example, this
method is applied to a flat-rolling metalworking process used to
manufacture metal plates.

2 Error Propagation Techniques

Many methods are currently in use or being researched that can
propagate error through a system, including (1) nondeterministic
analysis via brute force (such as Monte Carlo (MC)), (2) univari-
ate dimension reduction, (3) deterministic model composition, (4)
error budgets, (5) interval analysis, (6) Bayesian inference, (7)
anti-optimizations, and (8) error propagation via Taylor-series
expansion. A brief review of these methods and their benefits and
drawbacks is discussed below. As indicated, some of these meth-
ods have significant computational cost, some require independent
variables, some have complex implementations, and some are
unable to predict an entire output distribution. Sections 3–5 of this
paper present a Taylor-series-based method to overcome these
grievances with minimal or no loss in accuracy.

2.1 Monte Carlo and Sampling Techniques. Due to the
complexities of nondeterministic modeling, most nondeterministic
error analysis techniques represent uncertainty with probabilities,
which are then propagated through a deterministic model [4]. This
is commonly achieved with a brute-force or sampling approach
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that uses Monte Carlo, quasi Monte Carlo [5,6], Latin hypercube,
Latin supercube [7], a hybrid [8], or some other technique. These
approaches do not need to assume a Gaussian output distribution.
Consequently, an estimate of the fully described output distribu-
tion can be obtained.

These methods can require a higher computational cost than
some of the other techniques discussed below, and the entire sim-
ulation must be executed again each time the model or any input
value changes. This can be prohibitive in an iterative design
process.

2.2 Univariate Dimension Reduction. The goal of univari-
ate dimension reduction is primarily to reduce the complexities of
dimension explosion by reducing multivariate problems into a set
of univariate problems. Collectively, a set of univariate statistical
integrals is much easier to solve than a single multivariate statisti-
cal integral. In some situations, data analysis may even be more
accurate in the reduced space than in the original space, such as
with regressions [9].

Univariate dimension reduction is capable of predicting an
entire output distribution. However, even the univariate expecta-
tion integrals can be difficult to solve and all inputs must be inde-
pendent of each other. When inputs are correlated, they can be
transformed into independent variables with a Rosenblatt transfor-
mation [10], which adds an additional level of complexity to the
model.

2.3 Deterministic Error by Model Composition. Uncertainty
can also be propagated deterministically through a compositional
system model [11]. This technique produces max/min error
bounds by augmenting the system model with component error
models and comparing the resulting output with the original sys-
tem model’s output [12]. Errors do not need to be independent
and component models do not have to be mathematical or closed-
form functions.

However, deterministic error analysis requires known error
models for every component, and the max/min error bounds
obtained from this method are often much too large to offer practi-
cal assistance to the system designer. No information is obtained
regarding the statistical probabilities of outputs within the max/
min error envelop [1].

2.4 Error Budgets. The method of error budgets involves
propagating the error of each component through the system sepa-
rately, and resolving each component’s error to the contribution it
makes on the total system error [13,14]. This is done by perturb-
ing one error source at a time and observing the effect this has on
the total system error. Consequently, this method requires either
that component errors be independent or that a separate model
showing component error interactions be developed, which typi-
cally is not done [15]. If the error sources are not actually inde-
pendent, this method will not necessarily describe the full range
of possible model error.

2.5 Interval Analysis Methods. Interval analysis methods
bound rounding and measurement errors in mathematical compu-
tation. Arithmetic can then be performed using intervals instead
of a single nominal value [16]. These techniques can be used to
propagate error envelopes, or intervals, through a system model.
These methods, however, are typically limited to the basic opera-
tions of addition, subtraction, multiplication, and division.

2.6 Bayesian Inference. Bayesian inference is a method of
statistical inference whereby the probability that a hypothesis is
true is inferred based on both observed evidence and the prior
probability that the hypothesis was true [17]. It combines
common-sense knowledge with observational evidence in an
attempt to eliminate needless complexity in a model by declaring
only meaningful relationships [18] and disregarding the influences
of all other variables on system outputs.

2.7 Anti-Optimization Techniques. Anti-optimization tech-
niques allow the designer to find the worst-case scenario for a
given problem. This results in a two-level optimization problem,
where the uncertainty is anti-optimized on the lower level and the
overall design is optimized on a higher level [19].

2.8 Taylor-Series and Central Moments. A derivatives-
based technique can be much simpler to implement than most of
the methods previously discussed, does not require independent
inputs, is efficient in achieving high levels of accuracy, and can
predict an entire output distribution. While lower-order statistical
error propagation via Taylor-series expansion is common practice,
system designers typically only propagate variance and do not
consider the higher-order statistics of skewness and kurtosis
[20–22].

This paper shows that these higher-order statistics can be easily
propagated along with variance using a Taylor series. This gener-
ates a significantly more accurate and fully described output dis-
tribution with little additional effort or cost. This technique is easy
to implement and works well with correlated variables.

These higher-order statistics are determined by propagating
central moments. Central moments are commonly used in statisti-
cal analysis [21,23], particularly in the field of tolerance analysis.
The kth central moment is given by Eq. (2)

Fig. 1 Predicted output distributions obtained from propagat-
ing (a) mean and variance only, and (b) mean, variance, skew-
ness, and kurtosis. Actual system output distribution is shown
in (c).
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lk ¼
ð1
�1
ðx� �xÞkf ðxÞdx

¼ E ðx� �xÞk
h i

¼ 1

N

XN

j¼1

ðxj � �xÞk (2)

where x represents some distribution of N values, �x represents the
input mean, and E is the expectation operator. The central
moments of a population can easily be estimated using any appro-
priate population sampling technique.

The zeroth central moment is always equal to one, the first cen-
tral moment is always equal to zero [24], and the second central
moment is equivalent to the variance. The third and fourth
moments are used in the calculation of the higher-order statistics
skewness and kurtosis. This paper presents a discussion of these
higher-order statistics and addresses the benefits, limitations, and
underlying assumptions associated with using a Taylor-series and
central moments to propagate higher-order statistics.

3 Propagation of Variance

This section derives the first- and second-order Taylor-series
formulas typically cited in literature for variance propagation.

3.1 Derivation of Variance Propagation Formula Using
First-Order Taylor Series. While other sources of error exist
(such as unmodeled behavior, emergent behavior, and measure-
ment error), this paper focuses only on the variation in system out-
puts caused by variation in system inputs.

Let y be some function of n inputs x, where each input xi is some
distribution of possible values. The first-order Taylor-series approx-
imation expanded about the input means �x is shown in Eq. (3)

y � f ð�x1; :; �xnÞ þ
Xn

i¼1

@f

@xi
ðxi � �xiÞ (3)

where the partial derivatives are evaluated at the mean xi ¼ �xi. An
approximation of the output mean �y is given in Eq. (4)

�y ¼ E½y�
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� f ð�x1; :; �xnÞ (4)

where E is the expectation operator and lk;i is the kth central
moment for the ith input, as given previously in Eq. (2). (Recall
that the first central moment is equal to zero.) Subtracting Eq. (3)
from Eqs. (4) produces (5)

y� �y �
Xn

i¼1

@f

@xi
ðxi � �xiÞ (5)

Squaring and taking the expectation of Eqs. (5) produces (6)
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where r2
y and r2

x are the variances in y and x, respectively. Recall
that variance r2 is the second central moment, which is given by
Eq. (7)

r2
x ¼ l2

¼
ð1
�1
ðx� �xÞ2f ðxÞdx

¼ E½ðx� �xÞ2�

¼ 1

N

XN

i¼1

ðxi � �xÞ2

(7)

The second term in Eq. (6) is the covariance term, where r2
xixj

is
the covariance between inputs xi and xj. Covariance is defined in
Eq. (8)

r2
xixj
¼ E ðxi � �xiÞðxj � �xjÞ

� �
(8)

When inputs are independent, the covariance term is equal to
zero, and Eqs. (6) reduces to (9)

r2
y �

Xn

i¼1

@f

@xi

� �2

r2
xi

(9)

This simplifying assumption of independence is typically made,
both in literature and in practice. Consequently, Eq. (9) is the for-
mula typically given for statistical error propagation through an
engineering model [22,25–27]. This is identical to Eq. (1), which
was presented in the Introduction of this paper, and consequently
carries with it the same limitations discussed therein.

3.2 Derivation of Variance Propagation Formula Using
Second-Order Taylor Series. As shown in the preceding deriva-
tion, Eq. (9) is based on a first-order Taylor series. For nonlinear
and higher-order polynomial functions, Taylor-series truncation
error becomes significant and Eq. (9) can become extremely inac-
curate (i.e., wrong by one or more orders of magnitude [22]).

In situations where increased accuracy is required, a second-
order Taylor series is sometimes used to propagate statistical
error. For the sake of brevity, the second-order derivation is pre-
sented below for a monovariable function, y¼ f(x). Extending this
derivation to multivariate functions is trivial, as it follows the
same derivation steps.

The second-order Taylor series taken about the input mean �x is
given in Eq. (10), where the partial derivatives are again evaluated
at the mean, x ¼ �x.

y � f ð�xÞ þ df

dx
ðx� �xÞ þ 1

2

d2f

dx2
ðx� �xÞ2 (10)

The second-order approximation of the output mean �y is given in
Eq. (11).

�y ¼ E½y�

� E f ð�xÞ þ df

dx
ðx� �xÞ þ 1

2

d2f

dx2
ðx� �xÞ2

� �

� f ð�xÞ þ 1

2

d2f

dx2
l2 (11)

Subtracting Eqs. (11) from (10) gives (12).

y� �y � df

dx
ðx� �xÞ þ 1

2

d2f

dx2
ðx� �xÞ2 � 1

2

d2f
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l2 (12)

Squaring and taking the expectation of Eqs. (12) produces (13).

E y� �yð Þ2
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(13)
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If x is Gaussian, all odd moments (lk where k is odd) are zero and
Eqs. (13) reduces to (14).
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4
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ðl4 � r4
xÞ (14)

Furthermore, if x is Gaussian, the substitution l4 � 3r4 can be
made [28]. This substitution is made in Eq. (15).
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x þ
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2
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� �2

r4
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If y is a function of multiple independent inputs, the generalized
form of Eqs. (15) is given in (16).
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Equation (16) is the second-order formula most often cited in lit-
erature [25,29] for statistical error propagation.

3.3 Key Assumptions and Limitations. Though common in
engineering literature and academia, Eqs. (9) and (16) have many
significant limitations and make many important assumptions
[30]. These assumptions and limitations include the following:

(1) Taking the Taylor-series expansion about a single point (�x)
causes the approximation to be of local validity only [8,25].
Consequently, the accuracy of the approximation generally
decreases with an increase in the deviation from the input
mean.

(2) The approximation is generally more accurate for linear
and polynomial-type models.

(3) All inputs xi are assumed be Gaussian. When inputs are not
Gaussian, the non-Gaussian terms in Eq. (13) cannot be
neglected.

(4) All inputs xi are assumed to be independent. When inputs
are not independent, the covariance terms in Eq. (13) can-
not be neglected [22,26,31].

(5) The input means and variances must be known.
(6) The number of terms in Eq. (13) increases exponentially as

the number of model inputs increases [30].
(7) The output error distribution is assumed to be Gaussian,

described by only a mean and standard deviation.

4 Propagation of Skewness

Non-Gaussian distributions cannot be fully described with a only
mean and standard deviation. Consequently, higher-order statistics,
such as skewness and kurtosis, must also be used to describe non-
Gaussian distributions. This section considers the definition of

skewness and derives a formula for propagating skewness through
an engineering system model.

4.1 Definition of Skewness. The first-order statistic of a dis-
tribution is its mean, the second-order statistic is its standard devi-
ation, and the third-order statistic is its skewness. Skewness is a
measure of a distribution’s asymmetry. Skewness (denoted c1) is
defined in Eq. (17).

c1 ¼ E
x� �x

r

� �3
" #

¼ l3

r3

¼ j3

j1:5
2

(17)

where E is the expectation operator, l3 is the third central
moment, r is the standard deviation, and j2 and j3 are the second
and third cumulants, respectively.

Table 1 and Fig. 2 illustrate some characteristics and terminol-
ogy of positively- and negatively-skewed distributions. A skew-
ness of zero indicates a symmetric distribution.

Skewness is an important defining characteristic of statistical
distributions. A measure of skewness is required to fully describe
any asymmetric distribution. Traditional uncertainty propagation,
however, only propagates a mean and variance. With no skewness
information available, skewness is neglected (assumed equal to
zero) and a Gaussian distribution is assumed.

4.2 Skewness Propagation Formula Derivation. Using a
first-order Taylor series to propagate skewness through a system
model results in an output skewness equal to the input skewness. It
has already been demonstrated that this often does not reflect real-
ity, even for simple functions. Consequently, a second-order Taylor
series will be used to derive a formula for skewness propagation.

The second central moment of output y has already been given
in Eq. (13), and the third moment is given in Eq. (18).
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Table 1 Comparison of positive and negative skew

Sign Skewed Mean versus median [32]

Negative Left Mean < median (typically)
Positive Right Mean > median (typically)

Fig. 2 Examples of negative (left) and positive (right) skewness
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where lk is the kth central moment of input x, and @1 and @2,
respectively, represent the partial derivatives @f

@x and @2f
@x2, evaluated

at the mean x ¼ �x. The third moment is a cubic function, and con-
sequently it has four terms. Equation (18) has both first and sec-
ond partial derivatives, because it is based on a second-order
Taylor series. If a higher-order Taylor series were used, Eq. (18)
would contain higher-order partial derivatives.

The second moment from Eq. (13) and the third moment from
Eq. (18) can be used with the definition of skewness given by Eq.
(17) to estimate the skewness in output y. This output skewness
estimation is given in Eq. (19).

c1 ¼
E y� �yð Þ3
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(19)

Equation (19) estimates output skewness using the input central
moments, lk. If input skewness, kurtosis, and higher-order statis-
tics are known instead of input moments, these statistics can easily
be substituted into Eq. (19) in place of these moments.

Again for the sake of brevity, the skewness propagation formula
has only been derived for monovariate functions. However, this deri-
vation can easily been extended to multivariate functions as desired.

4.3 Key Assumptions and Limitations. The following four
assumptions and limitations apply to the method just presented to
propagate skewness:

(1) Equation (19) is based on a second-order Taylor series.
Consequently, it will predict output skewness perfectly for
second-order (or lower) functions. Accuracy decreases with
increasing nonlinearity.

(2) System model outputs and derivatives must be obtainable
from given system inputs (either analytically or numeri-
cally). This is possible for closed-form differentiable equa-
tions and many numerical models.

(3) Taking the Taylor-series expansion about a single point (�x)
causes the approximation to be of local validity only [8,25].
Consequently, the accuracy of the approximation generally
decreases with an increase in the input moments lk.

(4) The statistical input distribution must be known.

4.4 Skewness Propagation With Gaussian Inputs. Consider
the propagation of Gaussian error. With a Gaussian distribution,
the following expressions are true:

• All odd moments (lk, where k is odd) are equal to zero.
• The fourth moment is approximately three times the second

moment squared [28] (l4 � 3l2
2).

• The sixth moment is approximately fifteen times the second
moment cubed (l6 � 15l3

2).

Consequently, Eqs. (19) reduces to (20) when inputs are
Gaussian.

c1 �
3rx@

2
1@2 þ r3

x@
3
2

@2
1 þ

1

2
@2

2r
2
x

� �1:5
(20)

where rx is the standard deviation of the input distribution. Equa-
tion (20) proves that nonlinear functions (i.e., the second partial
derivative is nonzero) produces a skewed non-Gaussian output,
even with Gaussian inputs.

Furthermore, the most computationally expensive part to propa-
gating skewness is calculating first and second derivatives. How-
ever, these have already been calculated in order to propagate
variance if a second-order Taylor series was used, and conse-
quently the additional cost to also propagate skewness is minimal.

Any statistical property that is propagated through a system
model improves the accuracy of the predicted output distribution.
For example, propagating both a mean and a variance is more
accurate (and useful) than propagating a mean alone. In a similar
manner, propagating skewness in addition to a mean and variance
also improves the accuracy of the predicted output distribution.

Section 5 of this paper discusses the propagation of a higher-
order statistic, kurtosis, which further improves the accuracy of
the predicted output distribution.

5 Propagation of Kurtosis

This section defines kurtosis and excess kurtosis, and derives a
formula for propagating kurtosis through an engineering system
model.

5.1 Definition of Kurtosis. The fourth-order statistic is kur-
tosis. Kurtosis is a measure of a distribution’s “peakedness,” or
the thickness of the distribution’s tails. Kurtosis (denoted b2) is
the fourth standardized moment, and is defined in Eq. (21).

b2 ¼ E
x� �x

r

� �4
" #

¼ l4

r4
(21)

The kurtosis of a Gaussian distribution is equal to 3.

5.2 Definition of Excess Kurtosis. In statistical analysis,
“excess kurtosis” (denoted c2) is often used more than kurtosis. In
practice, the term “kurtosis” more often refers to excess kurtosis
instead of the fourth standardized moment. To avoid confusion, this
paper uses the definition of kurtosis presented above and defines
excess kurtosis as the fourth cumulant divided by the square of the
second cumulant, as indicated in Eq. (22). Since a Gaussian distri-
bution has a kurtosis of three, the “minus 3” in Eq. (22) causes a
Gaussian distribution to have zero excess kurtosis

c2 ¼
j4

j2
2

¼ l4

r4
� 3 (22)

The excess kurtosis of several common types of distributions are
shown in Fig. 3.

Fig. 3 The excess kurtosis of various common statistical
distributions
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5.3 Kurtosis Propagation Formula Derivation. A second-
order Taylor series will also be used to propagate kurtosis through
a system model. The third central moment of output y has already
been given in Eq. (18), and the fourth moment is given in Eq. (23)

l4;y ¼ E y� �yð Þ4
h i

(23)
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The excess kurtosis c2 in the output distribution y is given by
Eq. (25).

c2 ¼ b2 � 3 (25)

where kurtosis b2 is given by Eq. (26).
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An estimate of the kurtosis of an output distribution can be
obtained using Eq. (26) and a known input distribution. The input
central moments lk can be estimated using any appropriate popu-
lation sampling technique.

6 An Illustrative Example: Flat-Rolling Process

Consider the manufacture of steel plates or sheets via flat roll-
ing, where material is fed between two rollers (called working
rolls). This example illustrates that uncertainties in friction
between rolls and rolling material—an engineering-centric con-
cept—highly affects factory throughput and ultimately a rolling
company’s business plan. By using the relations derived in this
paper, a more meaningful inclusion of frictional effects is made,
and the rolling throughput is more effectively planned for.

In any plate-rolling mill, the gap between the working rolls is
less than the thickness of the incoming material. As the working
rolls rotate in opposite directions, the incoming material elongates
as its thickness is reduced. This process, illustrated in Fig. 4, can
be done either below the recrystallization temperature of the mate-
rial (cold rolling) or above it (hot rolling).

6.1 The Model. The manufacturer desires to use its flat-
rolling equipment more efficiently by reducing overall rolling
time for each plate. Consequently, the manufacturer desires to
minimize the number of passes required to achieve final plate

thickness. The maximum amount of deformation that can be
achieved in a single pass is a function of the friction at the inter-
face between the rolls and the material. If the intended change in
thickness is too great, the rolls will merely slip along the material
without drawing it in [33]. The maximum change in thickness
attainable in a single pass (DHmax) is given in Eq. (27) [34].

DHmax ¼ l2
f R (27)

where lf is the coefficient of friction between the rolls and the
plate, and R is the radius of the rolls. In this example, the radius of
the rolls is measured to be 0.406 m. Determining the coefficient of
friction in a metalworking process is more difficult, however. The
conditions surrounding friction in a metalworking process are
very different from those in a mechanical device [33], as shown in
Table 2.

Furthermore, lubrication is often used both to reduce friction
and consequent tool wear, and to act as a thermal barrier to help
regulate tool temperature [35]. All these factors and others (e.g.,
rolling speed, material properties, surface finishes, etc.) combine
to create variation in the friction experienced in the flat-rolling
metalworking process. This variation can inhibit the manufac-
turer’s ability to specify an optimal gap width (and the resulting
change in material thickness, DH) for each pass.

While many empirical and mathematical formulas have been
presented as methods to predict the coefficient of friction in flat-
rolling processes, these will not be addressed in this paper. For the
purposes of this example, it is sufficient to assume that some appro-
priate technique has been employed to determine the distribution of
friction coefficients. This distribution is described in Table 3 and
shown in Fig. 5.

Fig. 4 The flat-rolling manufacturing process whereby plates
or sheets of metal are made. Material is drawn between two roll-
ers, which reduces the material’s thickness.

Table 2 Comparison of the conditions of friction found in typi-
cal mechanical devices and metalworking processes

Typical mechanical devices Metalworking processes

Two surfaces of similar material
and strength

One very hard tool and one softer
material

Elastic loads and no change in
shape

Plastic deformation occurs in
material

Wear-in cycles produce surface
compatibility

Each set of rollers makes a single
pass
Contact area constantly changes
under deformation

Low/moderate temperature Often elevated temperature

Friction force depends on contact
pressure

Friction force depends on mate-
rial strength
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6.2 Statistical System Model Output Prediction. Based on
this distribution of lf , the first eight central moments were calcu-

lated using Eq. (2). These moments, given in Table 4, are used to
propagate statistical properties from the friction coefficient distri-
bution to predict a distribution for the maximum change in thick-
ness attainable with a single pass.

The second-order prediction of the mean maximum reduction
in thickness DHmax was calculated to be 5.0 cm using Eq. (11).
Equation (13) predicts a variance of 2.16 cm2. Typically, higher-
order statistics are not propagated and a Gaussian output distribu-
tion is assumed, which is shown in Fig. 6(a). This prediction only
accounts for 52.9% of the actual system output distribution (i.e.,
52.9% overlap in the area under the predicted and actual probabil-
ity density functions).

However, the method presented in this paper to propagate
skewness and kurtosis results in a more accurate prediction of the
system output. In this example, Eq. (19) estimates an output skew-
ness of 0.954, and Eq. (26) estimates an output kurtosis of 3.286.
This predicted output, shown in Fig. 6(b), accounts for 94.4% of
actual system outputs—a large improvement over propagating a
mean and variance alone.

Note once a mean, variance, skewness, and kurtosis are known,
a probability density function can be determined using an empiri-
cal distribution system, such as the Pearson system or the Johnson
system [10]. In this example, a Pearson system was used to gener-
ate the probability density functions shown in Fig. 6.

6.3 Ramifications of Neglecting Higher-Order Statistics.
Using the probability density function obtained from the tradi-
tional approach—where only a mean and variance are propagated

and a Gaussian distribution is assumed—the manufacturer would
have concluded that with a 99.5% chance of success, the material
thickness could only be reduced by a maximum of 1.21 cm per pass.
However, using the method presented in this paper to also propagate
higher-order statistics, the manufacturer can conclude that the mate-
rial thickness could be reduced by 3.22 cm per pass with the same
likelihood of success. This reduces the number of passes required to
achieve the desired plate thickness by over two and a half times,
which is a fundamental consideration to any business plan.

As this example clearly indicates, the benefits of propagating
higher-order statistics through a system model can be substantial.
Fortunately, estimates of output skewness and kurtosis are easy to
obtain using the formulas derived in this paper. Designers can use
these same formulas in a wide range of both simple and complex
engineering system models.

6.4 Accuracy and Cost Comparisons. This example is now
used to compare the accuracy and computational cost of the Tay-
lor-series-based methods presented in this paper with other error
propagation techniques. Specifically, these other techniques are a
MC simulation with 1 million executions and a Latin hypercube
sampling (LHC).

Accuracy was compared using the same metric introduced in
Sec. 6.2 (percent of the predicted distribution that overlaps with the
actual system output distribution). The accuracy of the MC simula-
tion was 100%, the Taylor-series method presented in this paper
was 94.4%, and the LHC was 94.6%. Figure 7 shows these results.

Computational cost was measured by MATLAB execution time.
The MC simulation took 5.951 s, the Taylor-based method from
this paper took 0.007 s, and the LHC took 0.851 s. This is illus-
trated in Fig. 8.

Table 3 Statistical properties of the distribution of the friction
coefficient in a flat-rolling metalworking process

Statistical property Value

Mean (�l) 0.35
Variance (r2) 9� 10�4

Skewness (c1) 0.7
Excess kurtosis (c2) 0.2

Fig. 5 Distribution of the coefficient of friction in a flat-rolling
metalworking process

Table 4 Central moments of the distribution of the coefficient
of friction, lf

Central moment Value

First moment (l1) 0
Second moment (l2) 8.99� 10�4

Third moment (l3) 1.88� 10�5

Fourth moment (l4) 2.58� 10�6

Fifth moment (l5) 1.45� 10�7

Sixth moment (l6) 1.45� 10�8

Seventh moment (l7) 1.21� 10�9

Eighth moment (l8) 1.2� 10�10

Fig. 6 Predicted output distributions obtained from propagating
(a) mean and variance only, and (b) mean, variance, skewness,
and kurtosis. Actual system output distribution is shown in (c).
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While the accuracy of the Taylor method presented in this pa-
per is similar to that achieved with LHC, the Taylor approach has
significantly less computation time. Furthermore, the Taylor
model also has an added advantage in that it is simple and can be
worked out by hand, where the LHC requires a computer and a
programmed algorithm.

6.5 Sensitivity to Derivative Approximation Errors. The
method presented in this paper requires first- and second-order
derivatives. Often engineering models are “black-box” functions
and a finite difference method must be used to calculate these deriv-
atives. To demonstrate the sensitivity of the output distribution to
errors resulting from finite difference derivative approximations,
this same example was solved repeatly using a forward-difference
derivative approximation with varying step sizes. Approximately, a
3% relative error in the derivative approximation can be absorbed
with little impact on overall accuracy. A relative error larger than
3% begins to linearly decrease the accuracy of the predicted output.
Figure 9 shows this relationship.

As seen in Fig. 9, the method presented in this paper is not par-
ticularly sensitive to small errors in derivative approximations,

and errors as large as 10% only reduced the accuracy from 94% to
80%—still significantly better than propagating a mean and var-
iance alone with perfect derivative values.

7 Conclusions

The variance in a system’s output can easily be predicted using
a Taylor series and knowledge of the input variance. However,
having only a mean and variance and lacking any additional infor-
mation about the output distribution, system designers often make
the erroneous assumption that the output is Gaussian. This paper
has shown how inaccurate that assumption can be, even for very
simple functions. By following the methods shown in this paper,
system designers can more fully describe an output distribution by
also propagating higher-order statistics, such as skewness and kur-
tosis, though a system model.

While sufficient for many physical systems, the approach to
higher-order statistical error propagation presented in this paper
may not work for all types of system models, such as state-space
models, Laplace transforms, and differential equations. Additional
work is required to adapt the method presented for use with these
types of models.
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