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A Computationally Assisted
Methodology for Preference-
Guided Conceptual Design
We present an interactive, computationally assisted, methodology for capturing and in-
corporating designer preferences into a numerical search for design concepts. An initial
pool of manually created designs is parameterized and used in a computational search
that recombines features to form new designs in a semi-automated way. Designs are
evaluated quantitatively by performance calculations and evaluated qualitatively by hu-
man designers. Designer preference is captured when visual representations of designs
are presented to the designer for subjective evaluation. The methodology searches for
optimally performing designs, guided by quantitative performance models and designer
preferences. The methodology couples the speed of computational searches with the
ability of human designers to subjectively evaluate unmodeled objectives. The new meth-
odology is demonstrated with a vehicle architecture example, which generates a set of
designs that progressively improves in performance and more fully meets designer pref-
erence. The proposed method brings the ability to generate numerous, optimally perform-
ing solutions across a wide solution space, in an efficient and human-centered way, and
does so in the early stages of design. �DOI: 10.1115/1.4002838�
Introduction
Among the most important decisions in the product develop-
ent process is one that marks the end of the conceptual design

hase: the selection of the most promising design concept, which
ill be fully developed in the remaining phases of the develop-
ent process. While there are various effective methodologies to

ssist the designer in identifying the best performing concepts
ithin a given set �1–5�, these methods are limited by the quality

nd quantity of the set of concepts under consideration. The qual-
ty of that set is partially determined by the level of creativity,
ntuition, and experience of the design team while the quantity is
rimarily determined by the amount of time and effort given to
oncept generation activities. Unfortunately, the abstract, ambigu-
us, and open-ended nature of conceptual design makes it imprac-
ical to generate and consider all, or even a majority of, the pos-
ible concepts using manual methods.

In early phases of design, there are often subjective decisions
ade, which are difficult to justify or explain rationally. It would

e helpful to be able to model these subjective decisions since
hey can have a large impact on the final performance of a design.
raditional physics-based models, parametric models used to ap-
roximate or predict the physical performance of a design, can be
escribed with equations, calculated using design variables, and
umerically optimized. However, the existence of subjective de-
isions implies that there are important aspects of performance
hat are unmodeled by physics-based models but are modeled in
he mind and intuition of the experienced designer, and that these
ubjective decisions are influential during conceptual design.
ompletely excluding humans from an automated evaluation pro-
ess would ignore the importance of human subjectivity in deci-
ions made during the conceptual design phase.

The purpose of the methodology presented in this paper is to
orm preference-based models, quantitative models of the qualita-
ive preference of a designer, and incorporate them into a numeri-
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cal search for better performing, more preferred designs. The
methodology is intended to be used as a decision-making assist/
tool during conceptual design, after an initial set of manually gen-
erated concepts has been generated, but before the selection of a
final concept. The design methodology automates the traditionally
manual process of combining and recombining features from an
initial set of concepts, and incorporates the interactively formed
preference-based models along with existing physics-based mod-
els, in order to guide the search for better performing combina-
tions of the human-generated ideas/features. We note that the
methodology presented here does not account for combinatorial
effects or unequal weighting of designer’s preference. This is the
subject of our future paper.

The remaining parts of this paper are organized as follows.
Section 2 provides a background on conceptual design automation
and preference capture methods. Section 3 presents the proposed
computationally assisted methodology. The methodology uses and
builds on the automated, computational search methods developed
in previous works �6,7� by the authors. The methodology will be
applied to a vehicle architecture example in Sec. 4. This paper
concludes and discusses future research in Sec. 5.

2 Literature Survey
In order to efficiently search through the vast number of pos-

sible solutions, conceptual design automation research �8–14� uti-
lizes computational power to quickly search for and evaluate al-
ternatives. Even in simple design problems, the number of
variables and number of possible combinations of features can be
beyond the capacity of human designers to manage manually and
understand the impact of design changes to the overall design
performance. To handle the large amounts of data, software pro-
grams have been developed that use digital morphological charts
�8�, allowing designers to visually select options from the chart.
Design repositories are a way of digitally archiving solutions from
existing products based on the functions they perform. The stored
information is searched to find similar solutions that are then sug-
gested for a new product with the same functions �9–11�. Cur-
rently, researchers at Missouri University of Science and Technol-
ogy in collaboration with the University of Texas at Austin have

produced a concept generator that draws on a design repository
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ith stored design information from over 100 consumer products
o produce alternative design solutions �12,13�. Other research by
utcheson et al. showed that genetic algorithms can be used to

elect multiple designs for detailed evaluation based on quantita-
ive objectives formulated during conceptual design �14�. Other
ork has shown the use of pattern search algorithms for efficient

wo- and three-dimensional packaging, layout, and routing prob-
ems �15,16�. These methods aid in combinatorially forming new
esigns in an automated way but the formation process does not
ccount for any unmodeled objective that can be identified using
he experience of a human designer.

Our previous works �6,7� presented a numerical optimization
earch strategy for automatically exploring morphological charts
sing genetic algorithm optimization search methods. The search
trategy begins with an initial pool of creatively produced design
oncepts, which are decomposed in a general manner, grouping
ubfunction solutions/features into rows of a morphological chart.

design is numerically represented by a design chromosome c,
efined as c= �x1 x2 . . . xn �T, where x is a set of n number of
esign variables/features from the morphological chart. In the
ethod of the previous works, genetic algorithms are used to

utomatically generate new designs by recombining values of the
esign chromosomes to find the best performing designs accord-
ng to calculated objective values. It was demonstrated that the

ethod could computationally search the vast number of possible
ombinations of features in a morphological chart and find opti-
al, nondominated, designs with increasing performance from

eneration to generation in the genetic algorithm. Simplified vi-
ual representations of the final set of designs and the calculated
bjective values were presented to designers for evaluation, en-
bling them to better understand and make trade-offs between the
uantitative and qualitative aspects of the designs. While these
ethods form designs automatically and use traditional numerical

ptimization to find better performing designs quickly, if human
ubjectivity and preference could be included from the criteria of
he automated search and evaluation process, the process would

ore closely match the criteria used by human designers in tradi-
ional conceptual design.

Design experience and knowledge are very valuable and diffi-
ult to transfer to other designers or from one product to the next.
ther researchers have done work to use human input to help
ake decisions. Michalek and Papalambros demonstrated the use

f visual representations of architectural layouts and enable de-
igners to have a level of interactive optimization �17�. This is
hown to be useful in architectural layout design because of the
ubjectivity related to the performance of floor plan designs �18�.

major focus of research in the areas of neural networks and
achine learning is to automatically learn to recognize complex

atterns and make decisions based on data �19�. Artificial intelli-
ence methods have been used in creative and subjective applica-
ions to create art �20� and to recommend music �21� based on
rior learning. Recent research using evolutionary computation
ethods in engineering design acknowledges that there are poten-

ial gains from using subjective human evaluation to guide opti-
ization toward better solutions, especially when the problem is

ess well-defined such as during conceptual design �22�. Similarly,
he decisions that designers make in the early phases of the design
rocess involve a complex mix of quantitative and qualitative
valuations. Some of these preference capture methods in litera-
ure will be used or adapted in the methodology of the present
aper, in order to model the subjective preferences of designers
nd guide the automated search accordingly.

Method Development
The main objective of the methodology presented in this paper

s to capture designer preferences for design features and incorpo-
ate that information into the numerical search that automatically
orms and evaluates new designs. The new design methodology

as eleven major steps and is described graphically by Fig. 1
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within the context of a conceptual design process. Steps 1–5 will
be briefly described here but further details can be found in our
previous works �6,7�. Steps 6–10, identified in the figure as the
preference-guided search, contain the preference capture and in-
corporation methodology, and are the main focus of this paper.

3.1 Step 1: Define Problem and Design Requirements. De-
fining the design problem and the design requirements, conditions
that a concept must satisfy, involves understanding the customer
needs and translating them into functional product specifications
and design objectives ��1 ,�2 , . . . ,�n�

�. Design requirements may
be quantitative, requiring calculated performance levels, as well as
qualitative in nature, using subjective judgment and intuition to
evaluate performance. There are numerous effective methods for
this step presented in literature �1–4�.

3.2 Step 2: Generate Concepts Manually. After defining the
design requirements, designers manually generate concepts, using
any effective method at his/her disposal, many such methods are
discussed in literature �1–4�. Concept descriptions could be as
simple as a list of ideas, or as complex as detailed, dimensioned
sketches.

3.3 Step 3: Decompose Concepts and Organize Into Mor-
phological Chart. This step involves decomposing each manually
generated concept into subfunctions and subfunction solutions,
which we will refer to as features, and organizing them into a
morphological chart �1,3�. The subfunctions are placed in the first
column of each row, and the features are placed in the row of their
corresponding subfunction. The purpose of this decomposition
method is to categorize features according to their intent so that
new concepts can be formed with combinations of interchange-
able features from the chart.

3.4 Step 4: Parameterize Designs. The morphological chart
is now parameterized, or represented numerically, in a two-
dimensional matrix. This matrix is shown generically in Eq. �1� as
matrix Fm, which will be referred to as a morphological matrix.

Fm = �
F11 F12 ¯

F1�nFM
�

F21 F22 ¯
F2�nFM

�

] ] � ]

F�nR�1 F�nR�2 ¯
F�nR��nFM

�
� = �

1 2 3 ¯ m1

1 2 3 ¯ m2

] ] ] � ]

1 2 3 ¯ mnR

�

Fig. 1 The conceptual design context within which the
preference-guided search methodology fits
�1�
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The size of the matrix Fm is nR�nFM
, where nR is the number

f function rows in the morphological chart and nFM
is the maxi-

um number of features in any of the rows. Fij is treated as a
iscrete solution, where each i is numbered sequentially from 1 to
i. Features characterized by continuous numbers are handled
ifferently.

Equation �2� shows matrix Fc, which contains the lower and
pper bounds for each continuous variable needed to fully de-
cribe designs numerically.

Fc = �
Fc1l

Fc1u

Fc2l
Fc2u

] ]

� �2�

The method of parameterization presented herein uses a chro-
osomelike numerical representation of designs: a column vector

f discrete values from each row of Fm and continuous values
rom within the bounds in each row of Fc, which we will call the
esign chromosome. Generically, the design chromosome is de-
ned here as

c = �xd1
. . . xdn

xc1
. . . xcm �T �3�

here xd is a set of discrete variables from the morphological
atrix Fm and xc is a set of continuous design variables from Fc.
he numerical values contained within the design chromosome,
hich represent each discrete variable and continuous variable,

re defined as the genes of a design chromosome. A more thor-
ugh description of this parameterization method is provided in
ur previous works �6,7�. The purpose of parameterization is to
nable the use of the manually generated concepts in the numeri-
al search in step 7.

3.5 Step 5: Define Performance Models. The purpose of this
tep is to define the quantitative performance models, which can
ach be physics-based models �phys, or preference-based models
pref. They will be used to automatically evaluate new designs

hat are found by the numerical search and optimization in step 7.
he output of the performance models is a measure of how well
esigns meet the design requirements defined in step 1. Each per-
ormance model � is defined as �= f�xd ,xc�. The physics-based
odels are generally simplified approximations of more complex

nalysis models used in the design embodiment or detailed design
hases. These types of calculations are usually the ones performed
anually as feasibility calculations or “ball park” performance

alculations. However simple, these models can be very powerful
hen implemented into the numerical search of step 7 because of

he vast number of calculations that can be performed automati-
ally and quickly. Initially, the known performance models will
ikely include only the physics-based models that are applicable to
he design problem at hand, and the preference-based model will
e interactively formed in the remaining steps.

3.6 Step 6: Form/Update Optimization Problem
tatement. The purpose of this step is to form �on the first loop�,
r update �on subsequent loops�, an optimization problem state-
ent that will be used in step 7 to search for the best performing

esigns. To form a quantitative preference-based model, the
hysics-based models are initially excluded from the optimization
roblem statement for a designer-specified number of learning
oops. This learning period allows the numerical search to explore
he design space and gives the designer an opportunity to manu-
lly evaluate designs from a wide design space, without the opti-
izer driving toward optimal designs as defined by physics-based
odels alone. It is important to note that upon executing step 6 for

he first loop, when the designer has yet to indicate preference, the
reference function is a constant, which results in a set of ran-
omly generated designs. These designs are manually evaluated in
he proceeding steps and the preference function is no longer a

onstant and is updated based on the preference expressed during

ournal of Mechanical Design
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the manual evaluation. During the entire learning period, the mul-
tiobjective optimization problems reduces to a single objective
optimization problem, as shown here

min
x

�− �pref�xd,xc�� �4�

subject to

gq�x� � 0, ∀ q � �1, . . . ,ng� �5�

hv�x� = 0, ∀ v � �1, . . . ,nh� �6�

xjl � xj � xju, ∀ j � �1, . . . ,nx� �7�

where g is a vector of inequality constraints, h is a vector of
equality constraints, x is a vector of design variables, and the
design variables are bound by their lower �l� and upper �u� limits
shown in Eq. �7�.

When the learning period ends, a decision that will be discussed
later, the optimization problem statement is updated to be a mul-
tiobjective optimization problem statement, incorporating the
physics-based models and the newly formed preference-based
models, as shown here

min
x

�− �phys�xd,xc�,− �pref�xd,xc�� �8�

subject to constraints in Eqs. �5�–�7�.
The purpose of the optimization problem statement is to direct

the numerical search and optimization, in step 7, to find the best
performing designs according to those performance models in-
cluded within the current form of the optimization problem state-
ment. Note that the creation of the preference-based model is
explained in detail in step 10 but here it is sufficient to say that
once it is formed, it is used in an equivalent manner as the
physics-based models.

3.7 Step 7: Perform Numerical Search and Optimization.
Guided by the current optimization problem statement, a numeri-
cal search and optimization is now performed to find designs that
will be presented to designers in step 8. The presence of discrete
and continuous variables makes evolutionary search methods,
such as genetic algorithms �23�, a preferred optimization search
strategy for the design methodology presented in this paper. The
numerical search begins by creating an initial population of de-
signs, where each design is expressed in the form of concept
chromosomes. On the initial loop of the search, the population is
created in a random manner. On subsequent loops, a portion, or
all, of the designs present at the end of the previous loop can be
used in this step. This replicates the inheritance principle of evo-
lutionary algorithms, with the intention of carrying over the best
design traits into successive loops in order to continue to improve
the performance of the designs generated by the methodology.
When created randomly, the discrete genes in the design chromo-
some are randomly chosen from the integer values in each row of
Fm. The genes that correspond to continuous variables are selected
randomly from values within their allowable ranges in Fc.

Next, the physics-based models and/or preference-based mod-
els, which are included in the current optimization problem state-
ment, are used to evaluate the performance of the current popula-
tion of designs. These performance values are used to calculate a
maximin fitness value for each design. The maximin fitness func-
tion is used because of the way it directs genetic algorithms to find
a diverse set of nondominated �Pareto-optimal� solutions �24�. The
maximin fitness value of each design is what determines the prob-
ability that a design will be selected to be a parent-design for
reproduction.

After fitness values have been calculated for the entire popula-
tion of designs, the genetic algorithm operations of tournament
selection, gene-by-gene crossover reproduction, mutation, and
elitism are used to gradually improve the overall performance of

the population �23�. This genetic algorithm evolutionary optimi-
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ation process repeats until a termination condition is met, which
an be a specified number of generations or until a convergence
riteria has been met, such as a minimum amount of change in
bjective values from one generation to the next. In the case of the
aximin fitness function, the progression of fitness scores from
ore negative to less negative indicates that the Pareto designs are

ecoming less clustered. In other words, the Pareto designs are
ore evenly spread out over the Pareto frontier.

3.8 Step 8: Visualize Designs for Manual Evaluation. After
he stopping criteria for the numerical search and optimization in
tep 7 have been met, a subset of designs from the final
eneration/population �nV number of designs� is presented to the
uman designer for subjective evaluation. The features present in
his subset are representative of the population, allowing the de-
igner to consider a diverse set of feature combinations without
valuating dozens of designs. A smart-Pareto filter �25,26� is one
ay to eliminate designs that are too similar to other designs
ased on the relative closeness of their objective values. Similar
pproaches may be used to do the same in variable space, should
he designer find this important to do. It may also be advantageous
o present the set of designs with the best performance according
o the preference-based models, or any of the physics-based

odels.
In addition to the designs selected through a filtering strategy, a

ercentage of the designs presented to the designer rR should be
andomly selected. This helps maintain a level of diversity within
he set of designs presented, especially during the learning period
s the population of designs gradually converges on similar de-
igns that match the designer’s preference.

To help a designer quickly comprehend the make-up of the
esigns being evaluated, the calculated performance values of the
hysics-based models and preference-based models are presented
isually along side graphical representations of designs. The
raphical representations can be created through CAD or other
arametric software that can quickly generate the visual images.
aving the performance data and the images of the designs shown

ogether helps a designer make trade-offs between the quantitative
erformance and the qualitative aspects of the designs as he/she
elects preferred designs.

3.9 Step 9: Capture Designer Preferences. With the visual
epresentations of the designs presented along with the perfor-
ance levels, a designer now selects the designs that he/she pre-

ers. One purpose for having a human designer manually evaluate
esigns is to attempt to capture unmodeled objectives. Also, a
uman can very quickly make mental trade-offs of competing
bjectives, resulting in subjective decisions. Evaluation methods,
uch as rating, ranking, or scoring of the designs, could be used to
ndicate preference. The lowest level of rating is to select or not
elect individual designs as preferred, which is the rating/
valuation method used in this paper. In each successive round of
anual evaluation, the design chromosomes of the designs, which

re selected as preferred, are recorded. The feature frequency
ount and variable values for each preferred design will be used
ext, in step 10, to form a quantitative preference-based model.

3.10 Step 10: Form Preference-Based Model. In order to
utomatically evaluate a designer’s preference for designs, which
ere formed in step 7, a mathematical model is now formed to
redict the designer’s preference for certain features and param-
ter values. In order to quickly form a preference model, we use
tatistical probability as the underlying theory to predict the prob-
bility that a design will be preferred by the designer. For both
iscrete and continuous genes in the design chromosome, the
athered preference data are used to estimate the probability den-
ity functions.

When creating an individual preference model for the discrete
enes, a discrete probability density estimate, also called the prob-

bility mass estimate, is created. Figure 2�a� shows an example of

21003-4 / Vol. 132, DECEMBER 2010
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a histogram for each value present in the preferred designs from
step 9. The histogram is actually a graphical estimate of the real

probability density function. The probability estimate f̂ for a new
gene value x is equal to the proportion of previously recorded
genes with the same value �27�, as shown here

f̂�x� =
nXi

nh
�9�

where n is the number of bins and h is the width of the bins and
nXi

is the number of values in the same histogram bin as x.
When creating an individual preference model for the continu-

ous genes, we use density estimation and smoothing techniques
�27,28�, which empirically form a distribution through the sum-
mation of normal distributions around each data point. The gene
values present in the preferred designs from step 9 are used in Eq.
�10� to form the probability density estimate.

f̂�x,h� =
1

nh	
i=1

n

K
 x − Xi

h
� �10�

where the kernel K is a distribution satisfying �K�x�dx=1 �i.e., a
normal distribution� and h is the smoothing parameter �27�. This
type of density estimate is illustrated in Fig. 2�b�, where the indi-
vidual kernels �the small distribution curves placed over each data

point� are summed up to form the density estimate f̂ �29�. As with
the histogram, the smoothness of the curve is determined by the
bandwidth, or smoothing parameter h, of the individual kernels.
The normal optimal smoothing method is one of the most com-
mon and most effective methods to choose a smoothing parameter
�28�. Assuming the kernel K is a normal density, the smoothing
parameter h is calculated as

h = 
 4

3n
�1/5

� �11�

where � is the standard deviation of the distribution �28�.
Figure 2�c� shows an example of a probability density estimate

for a continuous variable and the points used to create it. This
empirical approach to create the preference function allows the
model to be updated each time evaluations are completed by the
designer, thus continually improving the accuracy of the model.

The individual preference models for each gene in the design
chromosome can be combined into a single preference model used
to predict preference for an entire design, as defined here

�m
pref = � f̂ xd1

�xd1
� � ¯ � f̂ xdi

�xdi
� � f̂ xc1

�xc1
� � ¯ � f̂ xcj

�xcj
��

�12�

where f̂ xdi
is the probability density estimate for the ith discrete

variable/gene in a design chromosome and f̂ xcj
is the probability

density estimate for the jth continuous variable/gene in a design
pref

Fig. 2 Examples of „a… an estimated probability mass function
for a discrete variable, „b… a standard kernel density estimate
†29‡, and „c… an estimated probability density function for a
continuous variable, used to model and predict a designer’s
preference for the variables. Note that in all cases, the horizon-
tal axis represents the gene values, and the vertical axis repre-
sents how preferable a gene value is.
chromosome. This combined preference model �m , after being

Transactions of the ASME

3 Terms of Use: http://asme.org/terms



s
t
s
p

p
w
p
b
b
t
h
r
t
s
d
d
p
f

u
s
m
l
t
c
t
r
m
l
m
d

4

i
d
v
v

t
c
n
a
c
b
A
t
t
s
i
t
t
t
t
f
i

J

Downloaded Fr
ufficiently developed, can be used as a preference-based objec-
ive in the optimization problem statement, when it is updated in
tep 6, to guide the numerical search toward designs with a higher
robability of being preferred by the designer.

3.11 Step 11: Selection of Final Design(s). Each loop of the
reference-guided search in steps 6–10 gathers more data with
hich it can update the preference-based model, gradually im-
roving the ability of the numerical search to find designs that will
e preferred by the designer while also including the physics-
ased evaluations. It is generally accepted in the field of interac-
ive evolutionary computation �IEC� research that when subjective
uman preference is involved, there is not a global optimum rep-
esented by a single design �30�. For this reason, the new compu-
ationally assisted design methodology attempts to thoroughly
earch for a set of designs in a global optimum area. When a
esigner is satisfied with the final set of designs, any number of
esigns from that set can be used as a starting point for the next
hase of the product development process or as inspiration for
urther conceptual design efforts.

During the learning period, the preference-based model will be
pdated and improved with each loop of steps 6–10, and the
earch will gradually converge on a set of similar designs that
atch the preference of the designer. The decision to end the

earning period can be made by the designer when he/she feels
hat the individual gene preference models have been accurately
aptured, or a stopping criteria has been met, such as when all of
he designs selected for visualization �see step 8�, which are not
andomly selected nF=nV�1−rR�, have preference-based perfor-
ance scores above a designer-specified amount, such as 60%. In

oops after the learning period, stopping criteria could be deter-
ined in a similar fashion as an alternative to stopping at the

iscretion of the designer.

Vehicle Architecture Example
In this section, a vehicle architecture example is provided to

llustrate the 11-step method presented in Sec. 3. This section is
ivided into two parts: �a� moving through the 11 steps for the
ehicle example and �b� a test of the method to demonstrate con-
ergence on more preferred designs.

4.1 Example: Vehicle Architecture Design. Periodically, au-
omobile manufacturers will produce a new type of vehicle that is
onsidered innovative, by changing the form and/or function to a
ew look or use. Several modern examples are vehicle types such
s the minivan, the station wagon, the sport utility vehicle, and the
rossover. Realistically, these vehicles are simply different com-
inations of existing features and parameters of other vehicles.
lbeit designs based on recombination, there was a market for

hose types of new vehicles, which may have been based on func-
ionality, aesthetic appeal, or some combination. While fairly
imple outwardly, automobiles are very complex systems on the
nside, using multiple, high-tech, integrated mechanical and elec-
rical systems that functionally perform as specified. In this sec-
ion, the computationally assisted design methodology is applied
o a vehicle architecture design example, and used to demonstrate
he ability of the methodology to �1� capture designer preference
or features and parameters of vehicle design and �2� form and
ncorporate quantitative preference-based models with physics-

Table 2 Morphological chart for

Feature

Doors, F1 Two doors Four doors
Chassis, F2 Compact Midsize
Engine, F3 Four-cylinder V6
Drive type, F4 FWD RWD
Cargo style, F5 Rear hatch Truck bed
ournal of Mechanical Design
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based performance models into the search for, and evaluation of,
significantly more designs and novel designs than could be done
by manual methods.

4.1.1 Example: Steps 1, 2, and 3, Define Requirements, Gen-
erate, and Decompose Concepts. A list of the vehicle architecture
design objectives and their boundary conditions is shown in Table
1. Figure 3 shows examples of the human-generated concept
sketches for current vehicle types such as the compact car, mid-
size sedan, pick-up truck, passenger van, and so forth. The func-
tions of these vehicle concepts, along with other common vehicle
features and components, have been decomposed into the mor-
phological chart, shown in Table 2. Note that FWD, RWD, AWD,
and 4WD denote front, rear, all, and four-wheel drive, respec-
tively. Additional design variables are shown in Table 3. The de-
sign features and other design variables can be seen in Fig. 4,
which contains a schematic of the vehicle architecture design.

4.1.2 Example: Step 4, Parameterize Designs. The numerical
form of the morphological chart is shown in Eq. �13� as the mor-
phological matrix Fm.

Fm = �
F11 F12

F21 F22 F23 F24 F25

F31 F32 F33 F34 F35 F36

F41 F42 F43 F44

F51 F52 F53

� = �
1 2

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4

1 2 3
�
�13�

The complete design chromosome is defined as

cvehicle = �F1 F2 F3 F4 F5 wB nL tD sH2 nr tr gC �T

�14�

4.1.3 Example: Step 5, Define Performance Models. The five
physics-based performance models, price ��1�, weight ��2�, seat-
ing ��3�, towing capacity ��4�, and cargo space ��5�, along with

Table 1 Design objectives for vehicle design example

Objective Units Direction Range

1 Price, �1 $ Minimize 0��1

2 Weight, �2 lbs Minimize 0��2

3 Seating, �3 n/a Maximize 0��3

4 Towing, �4 lbs Maximize 0��4

5 Cargo space, �5 ft3 Maximize 0��5

6 Preference, �6 n/a Maximize 0��6�1

Fig. 3 Human-generated concept sketches of vehicles

icle architecture design example

ossible solutions

ull-size Heavy duty Super duty
V8 V8 diesel Electric Hybrid

AWD 4WD
Trunk
veh

P

F
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he unmodeled preference-based performance model for aesthetics
�6�, are defined in this section. The first is price and is defined as

�1 = mBCm + Ct + CF2 + CF3 �15�

here mB represents the mass of the body, Cm represents the cost
f the body material, Ct represents the cost of the tires, CF2 rep-
esents the cost of the chassis type, and CF3 represents the cost of
he engine type. Specifically

mB = 	
i=2

4

0.283�i�LsiHsiWsi� �16�

here Lsi, Hsi, and Wsi are the length, height, and width of the ith
egment of the vehicle and

�i = 0.00067, i = 2,3

0.00333, i = 4
� �17�

nd

Cm = 3.15 $/lbs �18�

Ct = 20tD �19�

CF2 = 0.283LfHfWfCm�0.02 + F4/10� �20�

CF3 =�
800, four-cylinder

1000, V6

1200, V8

1400, V8 diesel

1600, electric

1400, hybrid

� �21�

here tD is the tire diameter and Lf, Hf, and Wf represent the
ength, height, and width of the frame.

The second objective is weight and is defined as

�2 = mB + mt + mF2 + mF3 �22�
here

mt = 8tD �23�

mF2 = 150F2 + 550 �24�

able 3 Design variables for vehicle architecture design
xample

ariable Possible values

heel base, wB 72–175 in. �4.45 mm�
ose length, nL 25–50 in. �0.64–1.27 mm�
ire diameter, tD 20–36 in. �0.51–0.91 mm�
ab height, sH2 36–120 in. �3.05 mm�
o. of seat rows, nr 1, 2, 3, 4
ire aspect ratio, tr 0.20–0.85
round clearance, gC 6–20 in. �0.15–0.51 mm�
Fig. 4 A schematic of the vehicle
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mF3 =�
600, four-cylinder

800, V6

1000, V8

1200, V8 diesel

1000, electric

1100, hybrid

� �25�

The third objective is seating capacity and is simply defined as

�3 = 3nr �26�
The fourth objective is towing capacity, which is defined as

�4 =  0, F3 = 5,6

1000�F2 − 1��F2�F3 − 1� , otherwise
� �27�

The fifth objective is cargo space and is defined as

�5 = crVc �28�

where

Vc = Ls4Hs4Ws4 �29�

and

cr = �0.50, hatch

0.70, truck bed

0.25, trunk
� �30�

and the sixth objective is aesthetics, which is defined in this paper
as

�6 = faesthetic�xd,xc� �31�

where xd is a set of discrete variables/genes and xc is a set of
continuous variables/genes that describe a design.

4.1.4 Example: Step 6, Form/Update Optimization Problem
Statement. The single objective optimization problem statement
used during the learning period of the preference-guided search
uses only the preference-based model �6 and is equivalent to Eq.
�4�. To be clear, the smoothing parameter h is calculated for the
example according to Eq. �11�. The actual calculated value that is
used for each loop of the process depends on the parameter n �see
Eq. �11��, which is equal to the total number of designs selected
by the designer throughout all loops combined. As the value for
the parameter n increases, the smoothing parameter provides a
more accurate description of the designer’s preference. The mul-
tiobjective optimization problem statement used after the learning
period is over contains the physics-based models and the newly
formed preference-based model, resulting in the following form of
Eq. �8�, as shown here

min
x

��1�xd,xc�,�2�xd,xc�,− �3�xd,xc�,− �4�xd,xc�,− �5�xd,xc�,

− �6�xd,xc�� �32�

subject to

0 � �1 � 100,000 $ �33�
architecture design example

Transactions of the ASME

3 Terms of Use: http://asme.org/terms



w
c

O
m
o
t
=
m
p
t

t
p
P
p
o
t
b
d
m
a
t
o
s

E
h
l
o
r
b
c

a
e
p
p
f

J

Downloaded Fr
0 � �2 � 50,000 lbs �34�

2 � �3 � 15 seats �35�

0 � �4 � 26,000 lbs �36�

20 � �5 � 200 ft3 �37�

0 � �6 � 1 �38�

here xd is a set of discrete variables/genes and xc is a set of
ontinuous variables/genes that describe a design.

4.1.5 Example: Step 7, Perform Numerical Search and
ptimization. The genetic algorithm used as the numerical search
ethod used a generation size of N=540, a crossover probability

f pcrossover=0.2, a mutation probability of pmutation=0.0001, a
ournament ratio of rtournament=0.2, and number of generations G
20. These conditions for the numerical search result in the auto-
atic evaluations of 10,800 designs/combinations of features and

arameters per execution of the numerical search in each loop of
he design methodology.

Figure 5 shows the progression and convergence of the objec-
ives in the numerical search over ten loops. Here, there are two
opulations that are being evaluated, labeled part 1 and part 2.
art 1 incorporates the newly formed preference-based model, and
art 2 does not. Both populations are observed so that the affects
f including the preference-based model can be seen. The first
hree loops were the learning period, when only the preference-
ased objective was used. After the preference-based model was
eveloped, the physics-based objectives were included in the nu-
erical search for designs, changing to a multiobjective search

nd causing trade-offs to be made between the competing objec-
ives. After ten loops, all the designs were nondominated, Pareto-
ptimal designs, and the objectives had converged, having found a
et of designs that best met the objectives.

4.1.6 Example: Step 8, Visualize Designs for Manual
valuation. Figure 6 shows visual representations of a set of ve-
icle designs that were automatically formed, through random se-
ection methods during the learning period of the design method-
logy when no optimization has taken place. The visual
epresentations of the vehicles also present each design’s physics-
ased and preference-based performance levels, and several criti-
al design gene/feature descriptions.

4.1.7 Example: Steps 9 and 10, Capture Designer Preferences
nd Form Preference-Based Model. After a designer subjectively
valuates the displayed designs, the features and parameters
resent in the preferred designs are captured and used to form the
reference-based models. Examples of the preference models

Fig. 5 The progression of the design objective
from single objective optimization to multiobjec
ormed are shown in Fig. 7, where those shown as histograms are
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for discrete genes and those with probability density functions are
for continuous genes. Figure 8 shows a set of designs presented at
the end of the learning period. Having been optimized according
to the newly formed preference model, these designs are generally
similar in appearance but have different trade-offs of physics-
based performance.

4.1.8 Example: Step 11, Selection of Final Design(s). Figure 9
shows a representative set of designs from the final loop, after the
optimization has included the new preference-based model and
the physics-based models.

4.2 Example Validation. To validate that the new method
indeed identifies more-and-more designs that are designer-
preferred, an automated test was performed. The test ran through
the steps of the methodology, automatically selecting designs in
step 9 according to predetermined preference criteria in order to
simulate the choices that a human designer would make. In this
test, there are two populations that are being evaluated, labeled
part 1 and part 2. Part 1 incorporates the newly formed
preference-based model, and part 2 does not. Both populations are
observed so that the affects of including the preference-based
model can be seen. The upper plot in Fig. 10 shows an improve-
ment in the average preference-based performance through the ten
loops of the learning period. Notice that a more negative number
indicates that a population is “more preferred.” Also notice that
when the physics-based models are added �loop 11�, the prefer-
ence is worsened as the optimizer seeks to also optimize the
physics-based objectives. The bar chart shows that during the
learning period, there are progressively more preferred designs

rough the preference-guided search, changing
e optimization after loop 3

Fig. 6 Set of nonoptimized vehicle designs automatically
formed and presented to human designers for subjective
s th
tiv
evaluation
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being identified in part 1 population, as compared with part 2
population. Notice that over the ten loops of the learning period,
the quantity of preferred designs from part 1 steadily increases
from 2 to 9 while the quantity of preferred designs from part 2
varies inconsistently between 2 and 6, as indicated by the area of
the lightly shaded region of the bar chart.

This example, the results, demonstrated the use of all the steps
of the design methodology to search through vast number of pos-
sible combinations of design features and parameters �10,800 per
loop�, and converge on a set of preferred designs, as shown in Fig.
9. The vehicle features present in these designs are recognizable
from the initial concept sketches �see Fig. 3�, however, many of
the combinations of features are new and were not previously
considered by the designer.

5 Concluding Remarks and Limitations
This paper has focused on improving the set of designs that is

considered during conceptual design, by rapidly exploring design
possibilities and by incorporating human-based subjective evalu-
ation into a computational search. It was shown that the new
design methodology uses an interactive, statistics-based, prefer-
ence capture method to form a quantitative model of the subjec-
tive design decisions a designer made during the manual evalua-
tion of designs. This preference-based model, along with the
physics-based models, was used with multiobjective optimization
to guide the numerical search for designs that are nondominated,
the match the preference of the designer, and that represent new
combinations of features and parameter values that may not have
been found through manual methods. Importantly, the methodol-
ogy was able to rapidly evaluate tens of thousands of designs per
minute.

Future work to improve the effectiveness of the subjective
evaluation done by the designer could include improvements in
the visualization of design composition and performance. The
preference capture methods in this paper also do not account for
combinatorial effects or unequal weighting of preferred features

ign gene, formed from subjective evaluation of

mprovements during the learning period „top…,
Fig. 7 The preference-based models for each des
ig. 8 A set of vehicle designs that has converged using the
reference-based models and physics-based models of
ig. 9 New, optimized vehicle designs automatically formed,
onsisting of new combinations of features and parameter
Fig. 10 Test data showing the preference model i

ound „bottom…
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nd performance levels. There also exists the challenge of how to
odel performance of designs when unfamiliar combinations of

eatures occur that are not covered by the existing physics-based
odels. These new combinations can either be treated as infea-

ible designs, or as an opportunity to develop new performance
odels, potentially leading to the discovery of innovative prod-

cts.
It is likely that the application of this methodology will be most

uccessful for design teams that repeatedly redesign the same type
f products because they will have access to, or the expertise to
reate, well developed physics-based models. It is also well suited
or the design of modular products. The methodology could also
ssist these same teams in more fully exploring the design space
nd finding designs that accomplish their existing design require-
ents with new combinations of features that had not previously

een considered. Considering this, the methodology could be a
seful conceptual design tool in industries such as consumer prod-
cts, automotive, consumer electronics, recreational products, or
ny product that has the combination of qualitative design require-
ents and quantitative, performance requirements. We note that it
ould be more challenging to use this methodology when the
esign requirements are abstract and the goal is to reinvent the
ay tasks are approached.
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