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Reverse engineering is the process of extracting information about a product from the
product itself. An estimate of the barrier and time to extract information from any product
is useful for the original designer and those reverse engineering, as both are affected by
reverse engineering activities. The authors have previously presented a set of metrics and
parameters to estimate the barrier and time to reverse engineer a product once. This
work has laid the foundation for the developments of the current paper, which address
the issue of characterizing the reverse engineering time and barrier when multiple sam-
ples of the same product are reverse engineered. Frequently in practice, several samples
of the same product are reverse engineered to increase accuracy, extract tolerances, or
to gather additional information from the product. In this paper, we introduce metrics
that (i) characterize learning in the reverse engineering process as additional product
samples are evaluated and (ii) estimate the total time to reverse engineer multiple sam-
ples of the same product. Additionally, an example of reverse engineering parts from a
control valve is introduced to illustrate how to use the newly developed metrics and to
serve as empirical validation. [DOI: 10.1115/1.4007918]
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1 Introduction and Literature Survey

Reverse engineering, or the process of extracting information
about a product from the product itself, is a common industry
practice that has a noticeable impact on the global market. For
many companies, reverse engineering is synonymous with com-
petitive benchmarking—a legitimate and profitable business
norm. For other companies, however, reverse engineering repre-
sents a real threat to their competitive advantage, as imitators can
use reverse engineering to create imitation products or to extract
valuable trade secrets [1–5]. As a result, reverse engineering can
potentially inhibit growth and innovation [6]. To combat this
effect, companies can design products that are harder to reverse
engineer, which reduces the incentive for competitors to imitate
their products [7,8]. Therefore, strategic design approaches that
increase the barrier or time [9,10] to reverse engineer a product
are worth developing and can have a significant, positive impact
on a product’s return on investment [11].

The authors have previously presented a set of metrics and pa-
rameters to estimate the barrier and time to reverse engineer a
product once [12]. However, frequently in industry multiple sam-
ples of the same product are reverse engineered to increase data
accuracy, gather statistical information, estimate tolerances, or
gather additional information that was initially overlooked. Much
like other repetitive tasks, the time required to reverse engineer
any product sample after the first is likely to decrease due to learn-
ing that occurs from sample to sample. Thus, the time predicted
by the previous metrics, if multiplied by the number of times that
a product is reverse engineered, will overestimate the total time to
reverse engineer that product because the previous metrics do not
account for the effects of learning. The principle purpose of this

paper is to present additional metrics that enable a design engineer
to estimate the time and barrier to reverse engineer multiple sam-
ples of the same product by characterizing and accounting for
learning that occurs when reverse engineering.

As stated above, one purpose for reverse engineering multiple
samples of the same product is to improve data accuracy. When
one product is reverse engineered, the part, in most cases, is just a
single member of a distributed population, where variation is
undoubtedly present [13]. The precision of measuring devices,
such as digital calipers or coordinate measuring machines, also
introduces uncertainty into extracted product data [14]. As a
result, an appropriate statistical analysis needs to be performed in
order to test hypotheses on the true nominal values of information
contained by a product. This involves determining an adequate
product sample size to be reverse engineered based on a predeter-
mined confidence level and acceptable error [15]. As the number
of available parts for the sample size increases, so does the accu-
racy of the extracted data [16].

Another purpose for reverse engineering multiple samples of
the same product is to extract geometric tolerance data. Reverse
engineering with the intent of reconstructing a product for future
manufacturing is incomplete until tolerances are allocated to the
product. If the dimensions of a product vary more than the allow-
able tolerances, then the probability of the product failing to
assemble or function correctly increases. This will inevitably lead
to costly repairs, poor performance, and dissatisfied customers, all
of which diminish the product’s effectiveness [17]. Optimally
allocating tolerances is a typical, yet challenging task in engineer-
ing design. An overview of the many methods used to allocate tol-
erances when designing a product can be found in Ref. [18].
When reverse engineering, the process for allocating tolerances
becomes more difficult [19], as it requires a significant amount of
skill and experience to match the original tolerances of a product.
As a consequence, various methods have been presented in the lit-
erature to help approximate dimensional and geometric tolerances
when reverse engineering [20–22]. One in particular involves
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performing dimensional analysis on multiple samples of the same
product and comparing the results to discover possible manufac-
turing variations as an aid to establishing tolerances [22].

Regardless of the reason for reverse engineering multiple sam-
ples of the same product, the person or team reverse engineering
is likely to learn as they repeat the reverse engineering process.
Learning can be defined here as change in behavior that occurs as
a result of experience [23] and is typically accompanied by
improved performance [24]. This improvement in performance,
and the rate at which it occurs, has led several researchers to
investigate the learning curve for various industrial settings and
determine the factors that influence learning [25,26]. However,
research has not been published regarding learning during reverse
engineering.

In this paper, we introduce parameters and metrics that (i) char-
acterize a person’s learning capability in the context of reverse en-
gineering and (ii) predict the total barrier and time to reverse
engineer multiple samples of the same product. The remainder of
this paper is organized as follows: In Sec. 2, we present a brief
overview of the pertinent reverse engineering metrics developed
previously by the authors. The additional metrics—capable of
estimating the time and barrier of tolerance extraction—are then
introduced in Sec. 3, followed by a case study to illustrate the va-
lidity and limitations of the newly developed model in Sec. 4.
Concluding remarks are provided in Sec. 5.

2 Technical Preliminaries—Metrics for Reverse

Engineering Only One Sample of a Product

In this section, we provide the technical background for the
new developments in this paper. Harston and Mattson [12] create
an analogy between the extraction of information from a product
during reverse engineering and a simple resistor–capacitor circuit.
In so doing, they successfully used Ohm’s law to predict the time
to reverse engineer the first sample of a product with an average
error of 12.2%. An overview of the pertinent metrics and parame-
ters in their model is presented below and summarized in Table 1.
A familiarity with these metrics and definitions is requisite for
understanding the developments of the current paper.

2.1 Unit of Information. (K)—The quantity of unextracted,
pertinent information remaining in a product at any time. For
example, in the case of reverse engineering a product’s geometry,
K could refer to the number of geometric dimensions that have
not been measured yet. K0 is the amount of information initially
contained by a product.

2.2 Information Flow Rate. (F)—The rate at which infor-
mation remaining in a product is extracted.

2.3 Power. (P)—Effort per time exerted by a reverse engi-
neering team to extract information. The lower bound of P is zero
and represents no effort being put forth to reverse engineer a prod-
uct. The upper bound, one, signifies full effort at maximum
efficiency.

2.4 Barrier to Reverse Engineering. (B)—Anything that
impedes reverse engineering [27]. As indicated by the relationship
in Table 1, the barrier is a function of both the product being
reverse engineered and the team reverse engineering it.

2.5 Information Storage Ability. (S)—The capability of a
product to store information.

2.6 Time to Reverse Engineer. (T)—The total required
man-time to reverse engineer a product.

3 Metrics Development for Characterizing the Effects

of Learning When Reverse Engineering

In this section, we develop the metrics for predicting the time
and barrier to reverse engineer multiple samples of the same prod-
uct. The presentation of the metrics is divided into three main
parts. In Sec. 3.1, we discuss how the flow rate of information
changes during the process of reverse engineering multiple sam-
ples of the same product. In Sec. 3.2, we develop and present the
metrics. Finally, in Sec. 3.3, we explain how to use the metrics to
estimate the time to reverse engineer multiple samples of the
same product.

3.1 The Behavior of Information Flow Rates When
Reverse Engineering. When we reverse engineer a product, we
extract information from that product (see definition in Sec. 1).
Typically, these pieces of information are discrete in nature; thus,
it is advantageous to look at K and F at discrete values of K, which
we call unextracted information levels. Additionally, the values of
F will vary depending on the reverse engineering sample (i.e.,
how many samples of the product have been reverse engineered).
Therefore, we will use the subscripts ½ �k;s to distinguish unex-
tracted information level, k, and reverse engineering sample, s.
For example, the information flow rate when three dimensions
still need to be measured on the fourth product sample would be
denoted F3;4.

The way in which the flow of information varies when reverse
engineering is illustrated in Fig. 1, which plots the amount of
unextracted information in a product as a function of time for sev-
eral reverse engineering samples of the same product. The first
curve, labeled c1, represents the first product sample that is
reverse engineered. This curve resembles an exponential decaying
relationship and is derived from Table 1, relationship 6. When
K ¼ K0, the slope of c1 is relatively steep, which means the
extraction of information per unit time, or information flow rate,

Table 1 Reverse engineering parameters and metrics sum-
mary [12]

# Parameter or metric Electrical analogy Relationships

1 Unit of information (K) Charge (Q) 0 < K � K0

2 Information flow rate (F) Current (I) F ¼ dK=dt
3 Power (P) Power (P) 0 < P � 1
4 Barrier (B) Resistance (R) B ¼ P=F2

5 Storage ability (S) Capacitance (C) S ¼ ðKFÞ=P
6 Time (T) Time (T) T ¼ �BS ln K=K0ð Þ

Fig. 1 Unextracted information in a product as a function of
time—the curves for multiple reverse engineering samples are
compared
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is large in comparison to the slope of c1 when K ¼ Kc, where Kc
is the lowest unextracted information level of interest.

This variation in information flow rate can be credited to the fact
that reverse engineering encompasses more than just measuring
dimensions, for example. It includes secondary procedures such as
deciding which dimensions are pertinent, finding the dimensions in
the product, documenting or recording the dimensions on a hand
drawing or in a computer aided design (CAD) system, and verify-
ing that all the needed dimensions have been extracted. When all of
the aforementioned steps are performed, the flow rate of informa-
tion is low, in comparison to when none or few of the secondary
procedures are necessary for information extraction. This implies
that the fastest, or largest, flow rate occurs when information is sim-
ply extracted without utilizing any secondary procedures.

When a person reverse engineers a second sample of a product,
he or she utilizes some of the knowledge gained while reverse en-
gineering the product the first time, obviating some of the steps of
the reverse engineering process. For example, if someone is
reverse engineering the geometry of a piston for the second time,
the locations of the pertinent dimensions on the piston have al-
ready been determined during the first reverse engineering sam-
ple, as well as an appropriate documentation procedure. This is
characterized in Fig. 1, where the slopes along the curve for the
second product sample, labeled c2, are generally steeper than
those of c1, resulting in less total time to reverse engineer the
product. Reverse engineering additional samples, denoted by cns

in the plot, will yield similar results—flow rates will continue to
increase and the reverse engineering time will continue to
decrease. If the reverse engineering sample size is sufficiently
large, then the sample curves will approach the dashed line in the
plot, marked as c1. This line represents the reverse engineering
process when it is performed at maximum efficiency.

The slope of c1 in Fig. 1 is the initial flow rate, FK0;1, and is
described in detail in Ref. [12]. We also assume that the initial
flow rate is the initial slope of each sample curve, or

FK0;s ¼ FK0;1; 8s 2 f1; 2;…; nsg (1)

where ns is the number of reverse engineering samples. Based on
this assumption, the initial flow rate remains the same for an indi-
vidual, regardless of reverse engineering sample. Moreover, infor-
mation requiring less extraction time is extracted from a product
first, followed sequentially by units of information requiring more
time. While this may or may not happen in practice, when empiri-
cal data gathered by the authors is rearranged according to the
time to extract each unit of information—with the shortest times
placed first—this relationship generally holds true (see Sec. 4).

The horizontal dashed lines in Fig. 1 help to visually track
unextracted information levels along different sample curves. The
lowest unextracted information level in the plot is Kc, which is the
closest discrete value for which the following is approximately
true

Kc ¼ 0:05 � K0 (2)

This is the value typically used for K in relationship 6 in Table 1
to predict the total time to reverse engineer a product once [12];
the value 0:05 � K0 is used instead of 0:0 � K0 to ensure that rela-
tionship 6 yields a finite quantity of time. If the information flow
rates of different samples at any unextracted information level, K0

through Kc, are compared to one another, we assume the follow-
ing to be true

jFk;1j � jFk;sj � jFk;ns
j;

8k 2 fKc;Kc þ 1;…;K0g
8s 2 f1; 2;…; nsg

�
(3)

In other words, the flow rate at a particular unextracted informa-
tion level k is bound by the flow rate of the first reverse engineer-
ing sample, Fk;1, and the flow rate of the last reverse engineering

sample, Fk;ns
. Additionally, as stated above, if the product sample

size is sufficiently large, the curves in the plot approach a linear
prediction with the slope of the initial flow rate, FK0;1, or

lim
s!1

Fk;s ¼ FK0;1; 8k 2 fKc;Kc þ 1;…;K0g (4)

This suggests that as an individual learns while reverse engineer-
ing multiple samples of the same product, they drive the flow of
information towards maximum efficiency.

The question remains as to how quickly (in terms of reverse en-
gineering samples) information flow rates approach the initial
flow rate. Some individuals are fast learners with regards to
reverse engineering, while others are not. In Sec. 3.2, we intro-
duce a parameter, reflective of the rate at which a person can
learn, to help characterize this behavior.

3.2 Metrics for Reverse Engineering Multiple Samples of
the Same Product. The metrics for reverse engineering multiple
samples of the same product are derived from the first order
response of a simple resistor–inductor circuit [28,29]. Thus, we
are extending the electrical analogy created by Harston and Matt-
son [12] to include inductance, for two reasons: (i) we have
observed that when reverse engineering multiple samples of the
same product, the flow of information at an unextracted informa-
tion level behaves like the first order response of electrical current
in a resistor–inductor circuit and (ii) the inductance in a circuit
provides an applicable parameter that can be used to characterize
how quickly a person learns while reverse engineering.

The flow rate of information for any sample and unextracted in-
formation level, Fk;s, is calculated as

Fk;s ¼ Fk;1e�ðs�1Þ�B=Z þ FK0 ;1 1� e�ðs�1Þ�B=Z
� �

(5)

where B is the barrier to reverse engineering, as defined in Table 1,
and Z is termed the learning factor. The flow rate from the first
reverse engineering sample at any unextracted information level, k,
is denoted by Fk;1. This value is determined by solving for K from
the relationship for T in Table 1, and substituting into the relation-
ship for F in Table 1, which yields

Fk;1 ¼
�K0

BS
e�T=ðBSÞ (6)

This equation can be further simplified by substituting the rela-
tionships for B, S, and T in Table 1, allowing Fk;1 to be rewritten
as

Fk;1 ¼
FK0 ;1 � k

K0

(7)

where k has been substituted for K because we are interested in
the flow rate at discrete, unextracted information levels. In this
form, the first flow rate for each unextracted information level can
easily be calculated and used in Eq. (5). Notice that when s¼ 1 in
Eq. (5), the second term on the right hand side of the equation
drops out and Eq. (5) simplifies to Fk;s ¼ Fk;1. On the other hand,
as s approaches infinity, Eq. (5) simplifies to Fk;s ¼ FK0;1. This is
the same behavior for information flow rates that we described in
Sec. 3.1.

The learning factor, Z, is a measure of a person’s ability to learn
while reverse engineering multiple samples of the same product,
given a particular measurement tool. A large Z indicates a high re-
sistance to change in information flow rates, or in other words, it
is difficult for the individual/team performing the reverse engi-
neering to utilize information gained during previous iterations of
the process. A small Z may indicate that the process is nearly
automated, meaning that secondary reverse engineering proce-
dures do not need to be repeated after the first reverse engineering

Journal of Mechanical Design JANUARY 2013, Vol. 135 / 011002-3

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 04/25/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



sample. An example would be using a coordinate measuring
machine to automatically scan geometry or using a scanning elec-
tron microscope to extract the material microstructure from sev-
eral samples—the set up procedure is only done once, and then
the process is automated. If all other parameters are equal, a per-
son with a smaller Z will reverse engineer multiple samples of the
same product quicker than someone with a larger Z.

The learning factor is calculated as

Z ¼
B FK0;1 � Fk;s

� �
dFk;s=ds

(8)

where dFk;s=ds indicates the change in information flow rate, Fk;s,
per reverse engineering sample, s, for any flow rate besides the
initial flow rate, FK0 ;1. The parameters that comprise Z are experi-
mentally determined for an individual; more information on how
this is done is provided in Sec. 3.3. A similar equation to Eq. (8)
exists for inductance in a simple resistor–inductor circuit. In fact,
the learning factor is analogous to inductance in an electrical cir-
cuit—both measure resistance to change in flow rates (electrical
current or information flow rates). We note that Z does not change
as information flow rates increase, nor is it dependent on the unex-
tracted information level or reverse engineering sample—we
assume that a person’s aptitude to learn remains constant during
the reverse engineering process. Again, this is similar to an induc-
tor in an electrical circuit, where the inductance value remains
constant, regardless of the electrical current flowing through it.

With a relationship defined for how the flow rate of information
during reverse engineering changes, we can now calculate the total
time to reverse engineer multiple samples of the same product as

T ¼ �BS ln Kc=K0

� �
þ
Xns

ðs¼2Þ

XK0

ðk¼Kcþ1Þ

1

Fk;s
(9)

where the 1 in the numerator represents one unit of information,
ensuring that T has units of time. The first term on the right hand
side of Eq. (9), �BS ln Kc=K0

� �
, represents the time to reverse

engineer the first product sample, as given by the relationships in
Table 1. The second term of the equation accounts for all remain-
ing samples; thus, the outer summation is initialized at s¼ 2 and
continues until ns. For each sample, the reciprocal of Fk;s is
summed for all unextracted information levels starting with
k ¼ Kc þ 1 up through K0. The flow rates at the unextracted infor-
mation level Kc are not included because this is a forward differ-
ence approximation, and inclusion of the flow rates at the lowest
unextracted information level would overestimate the total time.
The parameters and metrics that make up Eq. (9) can easily be cal-
culated for any individual or product. As a result, the task of accu-
rately estimating the time to reverse engineer a product becomes
simple and straightforward. More information on how this is to be
done is included in Sec. 3.3.

The time required for each individual reverse engineering sam-
ple (beyond the first) can also be determined by modifying Eq. (9)
to get

T̂s ¼
XK0

k¼Kcþ1

1

Fk;s
(10)

where the subscript s distinguishes the reverse engineering sample
in question and the 1 in the numerator signifies one unit of infor-
mation. It is important to note that the metrics developed here use
discrete unextracted information levels to determine F, using
Eq. (7). Because discrete points are used to characterize the entire
curve, approximation error is introduced into the model. There-
fore, to maintain a higher degree of accuracy, it is more appropri-
ate to use the relationship for T in Table 1 for the first reverse
engineering sample.

Up until this point, the metrics introduced have not considered
the type of information being extracted from a product. Informa-
tion type is a significant factor in reverse engineering, as the bar-
rier and time for reverse engineering depend on the type of
information that is contained in a product [12]. Each information
type has a distinct initial flow rate, FK0;1 and learning factor, Z.
Therefore, every information type needs to be considered sepa-
rately. This will result in a different time to reverse engineer each
information type. The total time to reverse engineer all the infor-
mation types in a product, T�, is calculated as

T� ¼
XnI

i¼1

Ti (11)

where the superscript ½ �i is used to distinguish information type,
making Ti the time to reverse engineer one type of information as
calculated with Eq. (9), and nI is the total number of information
types contained in the product.

The barrier to reverse engineer multiple samples of the same
product is the same barrier that has been defined in Table 1. Each
information type has a unique barrier; however, this barrier does
not change with additional reverse engineering samples, despite
the fact that information flow rates do increase. This is similar to a
resistor in a resistor–inductor circuit—the value of its resistance
remains the same, even though the current passing through it can
change. Therefore, the effective barrier to reverse engineer multi-
ple samples of an entire product is still calculated using the rela-
tionships presented in Ref. [12].

3.3 How to Use the Metrics. In this section, we explain how
to use the metrics that were presented in Sec. 3.2 to estimate the
time to reverse engineer multiple samples of the same product.
This could be done in industry by original designers who are
trying to protect their products, or by those performing bench-
marking activities. The process is described by the flow chart in
Fig. 2. To start the process, one must determine the number of in-
formation types, nI , that are needed to reverse engineer the prod-
uct. The index to count the number of information types, i, is
initialized at 1.

Step 1 is to experimentally determine the initial flow rate, Fi
K0;1

,
for a particular information type i [30]. This is done by using a
uniform dimension extraction test. The goal of the test is to mea-
sure the average rate at which a person can extract information
from a product when no secondary reverse engineering procedures
are performed. In the test, an individual is asked to familiarize
themselves with a particular dimension on a product. After this is
done, the individual receives a measurement tool and the time
is then recorded for them to measure the dimension. The process
is repeated for many different dimensions of the same information
type and the extraction rates are averaged to determine Fi

K0;1
. The

resulting Fi
K0;1

determined by the test can be used to calculate the
metrics in step 4 for any product that contains the appropriate in-
formation type. In practice, the test only needs to be done once
and then the value for Fi

K0 ;1
can be reused for information type i,

or a generic database containing the initial flow rates for typical
measurement tools and operator skill levels could be developed.

Step 2 is to experimentally determine and calculate the learning
factor, or Zi. It is calculated using Eq. (8), which requires a flow
rate, Fi

k;s, other than the initial flow rate, and its associated deriva-
tive with respect to reverse engineering sample, dFi

k;s=ds. These
values are determined for an individual using a uniform dimension
extraction test, similar to how Fi

K0 ;1
is determined. However, in

this test the person must extract dimensions from multiple product
samples. During the test, the person is handed a product and asked
to extract several difficult pieces of information. Then, they are
asked to repeat the measurements on a new sample of the same
product. Fi

k;s and dFi
k;s=ds are recorded, and Zi is calculated with

Eq. (8). It is important that the information in this test be difficult
to extract, so as to emphasize differences in flow rates between
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samples due to actual learning that occurs in the process, and not
natural human variation.

Step 3 is to choose the number of samples, ns, and the total
amount of unextracted information, K0. With K0 defined, Kc can
be calculated using Eq. (2). In practice, when a person reverse
engineers a product, ns will be known initially, while K0 will not.
Otherwise, for the person using these metrics to predict the
reverse engineering time of their competitors, ns must be esti-
mated, but K0 will be known. Accurately predicting ns can be a
challenging task, as the number of samples used for reverse engi-
neering will vary for different products and companies; however,
an estimate can be made based on a statistical analysis to deter-

mine an adequate sample size. Additionally, if the price is signifi-
cantly high for one product, then ns will likely be small.

Step 4 is to calculate the barrier, Bi, storage ability, Si, the flow
rates, Fi, and time, Ti, with relationships 4 and 5 in Table 1, and
Eqs. (5), and (9), respectively. The P, F, and K typically used to
calculate Bi and Si are P¼ 1, F ¼ Fi

K0;1
, and K ¼ K0. Steps 1–4

are then repeated for each information type of interest in the prod-
uct, after which the total time to reverse engineer the product, T�,
is then calculated in step 5 with Eq. (11). Thus, the time to reverse
engineer a product can be estimated, without having to actually
reverse engineer the product. In Sec. 4, we discuss the accuracy
and limitations of the model with a case study.

4 Case Study and Validation

In this section, we present an empirical study with the purpose
of showing that the time to reverse engineer multiple samples of
the same product can be estimated by the relationships presented
in this paper. For this study, only geometric information was
extracted and analyzed. Two individuals were asked to reverse
engineer multiple samples of a spool valve block and its associ-
ated spool from a flowserve digital positioner seen in Fig. 3.
According to sources at Flowserve, the spool valve block and
spool have been reverse engineered and imitated by competitors
of Flowserve; therefore, these parts merit our attention in this
study on reverse engineering.

Before beginning the reverse engineering process, the initial
flow rate and learning factor of both individuals in the study were
determined as described in steps 1 and 2 from Sec. 3.3. The indi-
viduals were then instructed to extract and record geometric
dimensions using digital calipers with enough detail that the prod-
uct could be recreated if needed. Multiple samples (between 10
and 30) of both parts were analyzed by the individuals while the
time to reverse engineer was recorded.

Independently, the number of samples, ns, and the total amount
of unextracted information, K0, were chosen. This enabled the cal-
culation of the barriers to reverse engineering, storage abilities, in-
formation flow rates, and times to reverse engineer the product
samples. These values, excluding the information flow rates to
preserve clarity in presentation, are located in Table 2. The actual
extraction times along with the errors are also listed in Table 2.
As shown, the total errors ranged from �10.7% to 6.8%.

For comparison purposes, we will look at several models for
predicting the time to reverse engineer multiple samples of the
same product. Each model is described below and the total abso-
lute error, jej, for each model is compared in Table 3.

4.1 Linear Model. —The time for one sample predicted by
this model is calculated as T̂lin ¼ ðK0 � KcÞ=FK0;1. In other words,

Fig. 2 The process for predicting the time to reverse engineer
multiple samples of the same product

Fig. 3 Flowserve 3400IQ digital positioner with spool block valve and spool shown—image
adapted from Ref. [31]
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to calculate the total time for one sample, the quantity of informa-
tion contained in a product is divided by the initial flow rate. This
results in a linear relationship between K and T. The total time,
T�lin, is then calculated as T�lin ¼ ns � T̂lin. This is the simplest

model, and does not account for any variation in information flow
rates. As shown in Table 3, the average absolute error when using
this model was 30.3%.

4.2 Exponential Model. —For this model, the total time,
T�exp, is calculated as T�exp ¼ ns � T̂exp, where T̂exp is determined
from relationship 6 in Table 1. This is the time that is predicted
using the previous metrics [12], where learning is not accounted
for. It is called the exponential model because when K is plotted
against T, it resembles an exponentially decaying relationship. As
stated in Sec. 1, this model will typically overestimate the time to
reverse multiple samples of the same product. This is especially
evident for this case study, where the average jej shown in Table 3
for the exponential model was 120.3%.

4.3 Combined Model. This model is a combination of the
linear and exponential models. The total time is determined as

Table 2 Reverse engineering parameters and metrics for geometric information of Flowserve digital positioner spool and spool
block valve

Individual Part FK0 ;1 (dim/s) Z ns K0 Kc B S T�ðsÞ Actual T�ðsÞ e (%)

#1 Spool 0.065 2127 30 24 1 236.7 1.560 13,613 14,611 6.8
#2 Spool 0.057 2912 10 23 1 307.8 1.311 6606 5966 �10.7
#1 Block 0.065 2127 10 34 2 236.7 2.210 8179 7630 �7.2
#2 Block 0.057 2912 29 35 2 307.8 1.995 21,668 21,791 0.6

Table 3 Comparison of different models to predict the time to
reverse engineer multiple samples of the same product

Linear
model

Exponential
model

Combined
model

Learning
model

Individual Part jej (%) jej (%) jej (%) jej (%)

#1 Spool 27.3 140.9 21.7 6.8
#2 Spool 35.3 112.1 20.6 10.7
#1 Block 35.5 94.2 22.5 7.2
#2 Block 23.0 133.9 17.5 0.6

Average 30.3 120.3 20.6 6.3

Fig. 4 Unextracted geometric dimensions of the spool as a function of time for individual # 1—samples 2, 5, 10, and 30 are
shown
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T�com ¼ T�exp þ ðns � 1Þ � T�lin. We note that the exact same result
will occur if Z is nearly zero in the learning model. In this case
study, the combined model had the second best time prediction in
Table 3, with an average error of 20.6%.

4.4 Learning Model. —This is the model developed in this
paper. The total time is calculated here with Eq. (9), because we
are only dealing with one information type. Without exception,
the learning model outperforms the other models for predicting
the time to reverse engineer multiple samples of the same product.
The learning model predicted the times with an average absolute
error across all tests of 6.3% (see Table 3). The stark contrast in
accuracy between the learning model and the other models sug-
gests that learning plays an important role in reverse engineering
when using manual equipment such as digital calipers to extract
information from a product.

The plots in Fig. 4 display the actual results and model predic-
tions for spool samples 2, 5, 10, and 30 of individual #1. While
the plots are for a single individual and product, they are represen-
tative and consistent with other tests that we have performed. The
combined model is not explicitly called out in the plots, because it
is only a combination of the linear and exponential models, both
of which are shown. As the sample number increases, the data,
which is marked by the asterisks in the plot, moves away from the
exponential prediction towards the linear prediction. Likewise, the
learning model curve, begins at the exponential curve and moves
toward the linear curve at a rate that closely matches the real data.

We note that the data in the plots have been rearranged accord-
ing to the time to extract each dimension - with the shortest times
plotted first - and are not plotted in the order of dimension extrac-
tion. According to our assumptions given by Eqs. (1), (3), and (4),
the flow rates should never be larger than FK0 ;1, which is the slope
of the linear prediction in Fig. 4; however, some of the flow rates
for reverse engineering sample #30 are clearly larger than FK0;1.
This is explained by how we obtained FK0;1—by averaging the
quickest times to extract several simple dimensions from an arbi-
trary product (see Sec. 3.3 step 1). Since the FK0 ;1 used here is an
average, it is likely that some information will be extracted
quicker due to natural variation. If the data is not rearranged
according to the time to extract each dimension for sample #30,
with the shortest times plotted first, the actual data appears more
linear in nature and strongly correlates with the linear prediction.

5 Concluding Remarks

In this paper, we have presented general metrics for evaluating
the time to reverse engineer multiple samples of the same product,
which is a continuation of the research previously done by Har-
ston and Mattson in Ref. [12]. An exponential decay function
adequately describes the relationship between unextracted
information remaining in a product and time for the first reverse
engineering product sample. With subsequent samples, the rela-
tionship becomes more linear, due to changes in the flow of infor-
mation. We have introduced supporting metrics that characterize
this change in information flow rates due to learning.

A study involving multiple product samples of a spool and a
spool valve block from a flowserve digital positioner has been
offered to both demonstrate the use of the metrics and serve as
empirical validation. The study confirms that as reverse engineer-
ing samples increase, the flow rates at all unextracted information
levels increase toward the same asymptotical limit—the theoreti-
cal fastest flow rate, much like the response of electrical current in
a resistor–inductor circuit. Moreover, the example suggests that if
certain information is known about a product, the person reverse
engineering, and the product sample size, then the metrics can be
used to accurately estimate the total time needed to reverse engi-
neer the geometry of a product, and, in this case with an average
absolute error of 6.3%. Although this paper focuses on geometric
information, the metrics defined here can also apply to other infor-

mation types such as electrical conductivity, elasticity, tensile
strength, or even color.
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Nomenclature

B ¼ barrier to extract information about a product from the
product itself

F ¼ estimated or actual rate at which information is extracted
from a product

K ¼ estimated or actual quantity of information remaining in
a product

k ¼ an unextracted information level
K0 ¼ the quantity of information initially contained by a

product
Kc ¼ the lowest unextracted information level of interest
nI ¼ total number of information types
ns ¼ total number of reverse engineering samples
P ¼ estimated power—effort per time—exerted to extract in-

formation contained by a product
S ¼ a measure of a product’s ability to store information
s ¼ reverse engineering sample
T ¼ estimated time to extract information from a product
Z ¼ learning factor, a measure of a person’s resistance to

change in information flow rate

Subscripts, Superscripts, and Other Indicators

½ �� ¼ indicates ½ � pertains to the product as a whole

½c� ¼ indicates ½ � pertains to a single reverse engineering
sample

½ �k;s ¼ indicates ½ � is evaluated at unextracted information
level k and reverse engineering sample s

½ �i ¼ indicates ½ � is evaluated for information type i
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