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Abstract Formulation space exploration is a new strategy
for multiobjective optimization that facilitates both diver-
gent exploration and convergent optimization during the
early stages of design. The formulation space is the union
of all variable and design objective spaces identified by
the designer as being valid and pragmatic problem for-
mulations. By extending a computational search into the
formulation space, the solution to an optimization problem
is no longer predefined by any single problem formula-
tion, as it is with traditional optimization methods. Instead,
a designer is free to change, modify, and update design
objectives, variables, and constraints and explore design
alternatives without requiring a concrete understanding of
the design problem a priori. To facilitate this process, we
introduce a new vector/matrix-based definition for multiob-
jective optimization problems, which is dynamic in nature
and easily modified. Additionally, we provide a set of explo-
ration metrics to help guide designers while exploring the
formulation space. Finally, we provide an example to illus-
trate the use of this new, dynamic approach to multiobjective
optimization.

Keywords Conceptual design · Multiobjective
optimization · Design space exploration
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g Vector of inequality constraints
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p Vector of fixed design parameters
w Diagonal matrix of objective identifiers
x Vector of design variables or design objects
y Vector of independent design objects
z Vector of dependent design objects
μ Vector of design objectives

Subscripts and superscripts

[]l Lower bound
[]u Upper bound
[](0) Benchmark
[]U Utopia
[]N Nadir
[]∗ Optimal
[] Formulation space

1 Introduction

Advancements in computational power have transformed
the way engineers perform product design, especially during
the later, detailed stages of the design process. Computer-
aided design software, finite element analysis, compu-
tational fluid dynamics, and numerical optimization are
just a few of the computational tools at the designer’s
disposal. However, many of these tools, especially numer-
ical optimization, are rarely utilized during early, concep-
tual design stages. There are many reasons for this, but
most stem from the nature of conceptual design, which
is typically qualitative and fluid in nature. Numerical
optimization, on the other hand, usually requires quan-
titative, well-defined problems to solve. Thus, there is
a disconnect between numerical optimization and con-
ceptual design, which if resolved would allow designers
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to benefit from the power of computational assistance
and make more informed decisions earlier in the design
process.

Conceptual design has been defined in various ways
by several researchers (Pahl et al. 2007; Raymer 2006;
Ulrich and Eppinger 2004). A common thread between
all these definitions is the exploration and discovery of
design possibilities/requirements, coupled with the analysis
and selection of design concepts for further development.
Prevalent activities include benchmarking, conducting mar-
ket research, abstracting the problem, sketching new ideas,
brainstorming, building rudimentary prototypes, and testing
design concepts with simple experimentation. Analytical
models, when available, are typically low fidelity and com-
putationally inexpensive, which in many cases is seen as
an advantage, as they allow a designer to quickly explore a
large design space (Kuehmann and Olson 2009; Wang and
Shan 2007). Clearly, if computational assistance is to be uti-
lized during conceptual design, then an analytical model in
some form is needed. Therefore, we will assume the defini-
tion of a design concept from Mattson and Messac (2003),
where a concept is defined as an idea that has evolved to the
point that there is a parametric model that represents one or
more aspects of its performance.

Decisions made during conceptual design generally have
the largest impact on the success or failure of a prod-
uct (Homan and Thornton 1998; Ishii 1995; Mattson and
Messac 2002; Wang 2001). Accordingly, several researchers
have begun to address the difficulties of implementing
numerical optimization techniques during this stage of prod-
uct development. For example, to capture and represent
qualitative objectives, researchers have turned to interactive
genetic algorithms (Brintrup et al. 2007, 2008; Gong and
Yuan 2011; Takagi 2001), fuzzy logic systems (Huber et al.
2008; Oduguwa et al. 2007), and preference based modeling
(Barnum and Mattson 2010). Concept selection via multi-
objective optimization is possible by generating and ana-
lyzing an s-Pareto frontier, which is the collection of
non-dominated designs from a set of concepts (Mattson
and Messac 2003; Mattson et al. 2009). Several applica-
tions where multidisciplinary design optimization has been
applied during conceptual design include aircraft config-
urations (Morino et al. 2006), communication satellites
(Hassan and Crossley 2002), and multistage space launch
vehicles (Qazi and Linshu 2005). Thus, there is significant
promise that numerical optimization can be utilized to an
even greater extent during conceptual design.

One challenge with conceptual design optimization that
has yet to be fully addressed is its dynamic nature—
design parameters, variables, constraints, objectives, and
limits are likely to change and evolve over time. With tra-
ditional optimization, one must know and clearly define
the design parameters, variables, constraints, and objectives

before optimization can begin (Arora 2004); however, when
the optimization problem definition is improperly for-
mulated (i.e., objectives and constraints are erroneously
assumed), the designer will likely be unsatisfied with the
results (Balling 1999; Stump et al. 2009). Therefore, in a
conceptual design environment, designers may be averse to
attempting any numerical optimization because the results
may be invalidated as design specifications are updated.
In order to be more effective in conceptual design, the
optimization problem formulation should be dynamic in
nature—easy to formulate, reformulate, and expand into
regions beyond the space defined by the initial parameter-
ization (Agate et al. 2010). This need for new Multidisci-
plinary Design Optimization (MDO) strategies that allow
for dynamic problem formulations has been identified as a
key research objective in the MDO community (Simpson
and Martins 2011). The need for a dynamic problem for-
mulation stems from the desire to (i) facilitate divergent
exploration, and (ii) include the designer as an integral part
of the optimization loop.

In this paper, we present a new strategy for multiobjective
optimization that enables the designer to quickly manipulate
an optimization problem and explore the design space in a
divergent manner. With this new strategy, the solution to an
optimization problem is no longer predefined by any single
problem formulation, as it is with traditional optimization
methods. Instead, the designer is free to dynamically form
the solution as he or she explores the design space as an
integral part of an iterative design loop.

The remainder of this paper is organized as follows: we
begin in Section 2 by discussing the current multiobjective
optimization problem formulation. In Section 3 we intro-
duce a novel concept in numerical optimization which is
fundamental to the remainder of this paper—formulation
space exploration. In Section 4 we introduce a new multi-
objective optimization problem formulation that facilitates
divergent exploration. In Section 5 we present exploration
metrics to help guide and quantify the exploration process,
and in Section 6 we illustrate formulation space exploration
with a conceptual design problem. Finally, in Section 7 we
offer concluding remarks.

2 Technical preliminary

The generic deterministic multiobjective optimization prob-
lem formulation is typically given as Problem 1 (P1):

min
x

{μ1(x, p), μ2(x, p), ..., μn(x, p)} (n ≥ 2) (1)

subject to inequality constraints gr(x, p) ≤ 0 {r = 1,

2, ..., ng}, equality constraints hs(x, p)= 0{s =1, 2, ..., nh},
and side constraints xl,i ≤xi ≤xu,i {i = 1, ..., nx}, where
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μi denotes the i-th generic design objective function; x is
a vector of design variables; p is a vector of fixed design
parameters; and ng , nh, and nx , are the total number of
inequality constraints, equality constraints, and design vari-
ables, respectively. As a note, μ, g, and h may be linear or
non-linear functions of x and p.

As formulated above, P1 yields a set of optimal design
alternatives—those belonging to the Pareto frontier. Each
solution comprising the frontier is said to be Pareto optimal,
which means there are no other designs for which all objec-
tives are better satisfied (Belegundu and Chandrupatla 1999;
Messac and Mattson 2002; Miettinen 1999; Steuer 1986).
We generally seek Pareto solutions because they indicate
that the objectives have been improved as much as possible
without sacrificing the performance of another competing
objective (Miettinen 1999).

Other important definitions associated with P1 include
the utopia point and the nadir point. The utopia point, μU ,
is the point where every objective is simultaneously at its
best, or

μU =
[
μU

1 , μU
2 , ..., μU

n

]T

(2)

where μU
i is defined as

μU
i = min

x
μi(x, p) (3)

subject to the inequality, equality, and side constraints on
P1. Likewise, the nadir point, μN , is the point where every
objective is simultaneously at its worst, or

μN =
[
μN

1 , μN
2 , ..., μN

n

]T

(4)

where μN
i is defined as

μN
i = max

x
μi(x, p) (5)

subject to the same constraints. Typically, neither the utopia
or nadir points are on the Pareto frontier nor are they
realizable; however, they are helpful for characterizing the
bounds of an optimization problem search space (Messac
and Mattson 2004).

Problem 1 is well suited for optimization routines used
later in the design process when design objectives and con-
straints are well known and the goal is to converge to the
optimal solution. However, in early-stage design, design
objectives and constraints may be unknown and the goal
is often to diverge and explore many design alternatives,
building designer confidence that a better design was not
overlooked (Ulrich and Eppinger 2004).

3 Formulation space exploration

A primary objective of this paper is to provide a new opti-
mization method to evolve the design space quickly in a
divergent exploratory phase as new design requirements and
preferences are identified. We will introduce the fundamen-
tal concept behind this method with the aid of a simple, yet
popular engineering problem: the two-bar truss. The truss is
depicted and labeled at the top of Fig. 1. The graphs below
the truss, labeled (a) through (d), represent a traditional
view of the design space for the two-bar truss. The graphs
in (e) and (f) introduce a new concept in optimization,
which is centered on the idea that the design variable space
and objective space of a particular formulation represent
only a portion of a larger space known as the formula-
tion space, the exploration of which is beneficial to the
designer.

The two-bar truss at the top of Fig. 1 is composed of cir-
cular tubing. The solid lines indicate the undeflected state
of the truss, while the dashed lines represent the deflected
state. The independent design parameters and variables
defined in the figure include the height (H ), base length (B),
tube diameter (d), tube wall thickness (t), material density
(ρ), modulus of elasticity (E), and vertical load (P ). The
mass (M), stress (σ ), buckling stress constraint (σbuckling),
and deflection (δ), are calculated using a strength/mechanics
of materials model (Fox 1971). Using these equations, we
can easily formulate an optimization problem for the truss.
For instance, we could minimize δ and M by changing t and
H , subject to inequality constraints on σ and σbuckling.

Figure 1a represents the design variable space for t and
H . Here, each design variable is shown on one of two
orthogonal axes for this two-variable problem. Clearly we
are not limited in concept to two dimensions, though we
choose this now for illustration purposes. The shaded region
is the feasible design variable space. Any point in the space
that resides in this region satisfies all constraints placed on
the design variables. The points or designs in the design
variable space map to the design objective space through the
objective functions. The design objective space for δ and M

is shown in Fig. 1b. Again, the set of feasible designs in the
design objective space is represented by the shaded region.
All solutions in this region satisfy all the constraints of the
problem formulation. Recall that for two or more objec-
tives, the Pareto frontier (see Section 2) exists if two or more
objectives are in conflict—which is the case here, since a
decrease in material (and therefore, mass) can be expected
to result in an increase in the deflection (δ) of the truss.

It is essential to note that both the design variable space
and the design objective space are completely defined by
the optimization problem formulation. In fact, if we refor-
mulate our optimization problem to include B as a design
variable (i.e., minimize δ and M by changing t , H , and B
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subject to the same inequality constraints on σ and
σbuckling), then we get different design variable and objec-
tive spaces, which are the darker shaded regions in Fig. 1c
and d. The new design variable space in (c) is actually a
projection of a 3-dimensional space onto the t-H plane,
due to the adjusted values of the design variable B. While
this space appears to overlap with the one defined by the
previous formulation (shown as the lighter shaded region),
it maps to a completely separate design objective space
in (d). The design of least mass, seen as an asterisk in
the graphs, is different depending on the optimization for-
mulation. Thus, a common argument against numerical
optimization methods is that the optimal solution to the
problem is predefined by the problem formulation—in other
words, the optimal solution is defined before the search
begins. For many practical problems this predefinition is
not a drawback since numerical optimization is employed
to simply carry out the mundane search for the solution
that the designer knows he or she wants. For other design
problems, not of this nature, the designer is genuinely inter-
ested in exploring the design options without having to form
a concrete understanding of the problem or definition of
the formulation. In such cases, which are abundant in early
design, an alternative concept for numerical optimization is
needed.

The new strategy presented here expands the explo-
ration of design possibilities to another space—the formula-
tion space, meaning the optimization problem formulation
space. Exploration into this space is divergent, as it expands
from the traditional consideration of design variable and
design objective spaces for only one problem formulation.
Figure 1e and f illustrate the formulation space for design
variables t and H , and the formulation space for design
objectives δ and M , respectively. For notation purposes, a
bar is placed under the symbol to indicate that it is in the
formulation space. To elaborate, consider Fig. 1e, which is
the formulation space for design variables. Here, we see
a large, shaded region labeled as the formulation design
variable space. The regions enclosed by the dashed lines
represent the design variable spaces formed by the pre-
vious optimization problem formulations from above. As
shown, the formulation space encompasses the previous for-
mulations, and expands into design spaces that we have
not explicitly introduced here. The formulation space is the
union of all design variable and objective spaces identi-
fied by the designer as being valid and pragmatic problem
formulations.

The fundamental technical concept of this paper is that
by expanding the exploration into the formulation space, the
optimal solution is no longer predefined by the optimiza-
tion formulation; instead, the solution is formed through
divergent exploration of the formulation space. Importantly,
this places the designer at the center of the optimization

loop, where his or her judgment can be utilized to rationally
interpret the results of the computational search.

Divergence in early design is crucial to avoid missing a
potentially superior solution, only to later discover its exis-
tence and have to perform costly design iterations (Ulrich
and Eppinger 2004). With P1, once the problem is for-
mulated, convergence begins and divergence can no longer
occur unless modifications are made to the programming
of the problem formulation. Changing the formulation in
P1 after it has been executed is non-trivial, as the designer
must transition from a creative, explorative mind-set to an
analytical mental disposition to reprogram the optimization
problem. This is not conducive to design exploration; the
designer is less likely to ask “what if” questions if he or
she must exert a significant amount of effort to reformulate
the optimization problem. In CAD modeling, studies have
shown that premature idea fixation is likely to occur if the
perceived cost of changing the model is too high (Robertson
and Radcliffe 2009). The same is true for optimization—if
the perceived cost of reformulating the optimization prob-
lem is high, then a designer will not likely explore the
formulation space. Thus, a dynamic optimization problem
formulation is required, one that allows the designer to opti-
mize and reoptimize with modified variables, constraints, or
objectives at a low cost.

4 Dynamic multiobjective optimization problem

Formulation space exploration requires us to look at opti-
mization problem statements in a new light—one in which
design variables can seamlessly turn into design parame-
ters, or inequality constraints into design objectives, etc.
As optimization problem formulations change, so do the
individual components; what was a design parameter in
one formulation could be implemented as a design objec-
tive in the next formulation. Thus, to avoid confusion and
to illustrate that the designer does not have to commit to
variables, parameters, constraints, or objectives, we will
refer to these components of an optimization formulation
as design objects. With this understanding, we present a
generic dynamic multiobjective optimization problem as
Problem 2 (P2):

min
y

{
μ1(x), μ2(x), ..., μnx (x)

}
(nx ≥ 2) (6)

subject to the side constraints

yl,i ≤ yi ≤ yu,i {i = 1, ..., ny} (7)

zl,i ≤ zi ≤ zu,i {i = 1, ..., nz} (8)

where

μ = w ∗ x (9)
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w =
⎡
⎢⎣

w1,1 . . . 0
...

. . .
...

0 . . . wnx,nx

⎤
⎥⎦ (10)

x = [
y1, y2, ..., yny , z(y)1, z(y)2, ..., z(y)nz

]T (11)

where x is a vector composed of independent design objects
(model inputs), y, and dependent design objects (model out-
puts), z; w is a diagonal matrix where each element along
the diagonal is a member of the set {−1, 0, 1}; nx , ny , nz are
the number of design objects, independent design objects,
and dependent design objects, respectively.

Problem 2 is very similar to Problem 1, with a few excep-
tions. Beginning with (6) in P2, the dynamic multiobjective
optimization problem is minimized over all independent
design objects in y instead of only the design variables in x.
In fact, assume the nature of x has changed; it now includes
all independent and dependent design objects, whereas in
P1, x only contained independent design variables. The role
of each design object in x is determined by the lower and
upper bounds on y and z in (7) and (8), as well as the values
in the diagonal of w in (10). If in (7), yl,i = yu,i , then yi

(or xi) is a design parameter; otherwise, yi is a design vari-
able. Likewise, if in (8), zl,i = zu,i , then zi (or xi+ny ) is an
equality constraint; otherwise, zi is an inequality constraint.
Thus, the inequality, equality, and side constraints for P1 are
satisfied with (7) and (8). If in (10) wi,i = 0, then the cor-
responding xi is not a design objective. If wi,i = 1, then xi

is an objective that is minimized; if wi,i = −1, then xi is an
objective that is maximized. The conditions that determine
a design object’s behavior are summarized in Table 1.

Importantly, P1 and P2 will yield the same Pareto
frontiers; however, by describing the multiobjective opti-
mization problem with P2, formulations are more easily
manipulated, allowing the designer to quickly and effi-
ciently explore all feasible and pragmatic design spaces. If,
for example, the designer wants to switch a design variable
to a minimized objective, then he or she simply changes
the corresponding value in the w matrix—no additional pro-
gramming is necessary. Likewise, if he or she wants to
change a parameter to a design variable, only the values

Table 1 Design object behavior in P2

Design object xi Condition

Minimized objective wi,i = 1

Maximized objective wi,i = −1

Non-objective wi,i = 0

Design parameter yl,i = yu,i

Design variable yl,i �= yu,i

Equality constraint zl,i = zu,i

Inequality constraint zl,i �= zu,i

in yl and yu need to be changed. To illustrate, consider
Table 2, which presents the number of required line changes
to generic pseudocode (see Appendix) to modify an opti-
mization problem formulated with P1 and P2. The number
of line changes are tallied for adding and deleting design
objects from the formulation, as well as modifying or mutat-
ing existing design objects. Changes to values in the code
were not counted, as such actions are considered trivial; for
example, if the upper bound on a design variable changes
from a value of 3.50 to 4.00, this is not included in the tally.
As shown, on average, P2 requires 14 less lines of code to
change than P1.

We note that there are some drawbacks to the dynamic
optimization formulation. The required number of changes
to lines of pseudocode for adding a design object is greater
for P2 than for P1. However, this discrepancy will be often
be compensated for by the decreased number of changes to
lines of pseudocode for modifying that new object after it
has been created. Because a designer will often have little
prior experience with this new design object in his or her
formulation, we suspect that modifications will be required
often, mitigating to some extent the negative aspect of this
drawback. Also, depending on the optimization algorithm
used, computational efficiency may decrease. Since P2 min-
imizes over all independent design objects (y) including

Table 2 Required changes to lines of pseudocode to add, delete, or
mutate design objects in P1 and P2

Action Design object P1 P2

Add design Objective (Independent) 5 5

object (New) Objective (Dependent) 3 6

Constraint 4 5

Variable 4 4

Parameter 2 4

Sub total 18 24

Delete design object Objective 1 0

Constraint 1 0

Variable 4 4

Parameter 2 4

Sub total 8 8

Modify or mutate Constraint to objective 1 0

design object Variable to objective 1 0

(Existing) Parameter to objective 7 0

Parameter to variable 6 0

Inequality constraint to equality 3 0

Add bound to constraint 2 0

Sub total 20 0

Total 46 32

Numerical value changes are not counted
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those that act as fixed design parameters, many gradient-
based optimization algorithms will attempt to perturb fixed
independent design objects and waste function calls. While
any computational inefficiency is obviously undesirable,
this is generally not a significant problem during conceptual
design, because the models are typically computationally
inexpensive (see Section 1). Moreover, other non gradient-
based algorithms such as simulated annealing or genetic
algorithms will see no significant efficiency losses. A closer
look at the benefits and drawbacks of P2 is provided in
Section 6.

5 Exploration metrics

To aid the designer during the exploration process, we pro-
vide several exploration metrics. These metrics help the
designer to determine (i) how well the exploration pro-
cess has expanded the formulation space, (ii) how much
improvement to objectives has been added through for-
mulation space exploration, and (iii) when the exploration
process is no longer diverging. These metrics loosely cor-
respond to metrics of ideation effectiveness, as proposed
by Shah and Vargas-Hernandez (2003)—namely novelty,
variety, quality, and quantity. The difference here is that
we are exploring design alternatives rather than generating
new design concepts. Our metrics describe improvements
made to the formulation space in terms of novelty, preferred
variety, and quality.

For each of the metrics introduced in this section, we
assume that there is a baseline formulation objective space,
denoted with the superscript [](0). This benchmark design
space is the first to comprise the formulation space. If there
is no improvement over the benchmark, then the value of
the metric is zero. Higher values of each metric indicate
improvement. We also assume that the last or current formu-
lation in the formulation space contains the critical design
objects, as determined by the designer. In other words, if at
the beginning of the design exploration process the designer

is only interested in two objectives, but by the end of the
exploration process he or she is interested in three, then the
three objectives are used in the calculations for the met-
rics of all previous formulation spaces. In this manner, the
design spaces that make up the formulation space can be
compared to one another. Finally, we note that feasibility is
assumed in formulation space exploration; by definition, a
space that is not pragmatic or valid is not included in the
formulation space.

5.1 Novelty

Novelty, as defined by Shah and Vargas-Hernandez (2003),
is a measure of how well the exploration process expands
the search into regions that are not perceived to be within the
design space. Thus, during formulation space exploration
any region of the formulation space outside the original
design objective space is considered novel. The metric for
formulation space novelty, Mn, is given by

Mn = ‖�‖ − ‖�(0)‖
‖�(0)‖ (12)

where � is the diagonal of the hypercube containing the
entire formulation objective space, �(0) is the diagonal
of the hypercube containing the original design objective
space, and in general �(i) is the diagonal of the hypercube
containing the i-th space (Messac and Mattson 2004), or

�(i) = μN,(i) − μU,(i) (13)

and μN,(i) and μU,(i) are the nadir point and utopia point,
respectively, for the i-th space. This is depicted graphi-
cally for a two-dimensional formulation space in Fig. 2a.
The darker shaded region represents the original design
space within the formulation space, shown as the lighter
shaded region. The hypercubes containing both the original
design objective space and the formulation space are also
shown—Mn measures the difference in the vector lengths
that connects the utopia and nadir points of both spaces. We
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note that if design preferences are truly known, Mn is not
highly valued, as it can reward exploration into regions that
are not desirable. If the designer has an interest in diver-
gently exploring a product’s design space, however, this
metric provides him or her with a way to quantify to what
extent new design alternatives are being discovered due to
the exploration process. Even if a new optimal solution is
not found, the designer may gain confidence in his or her
original solution after having seen the potential benefits and
drawbacks of other, previously unconsidered, designs.

5.2 Preferred variety

Preferred variety is a measure of how well the formula-
tion space expands into desirable regions. The metric for
preferred variety, Mv, is given by

Mv = ‖μU − μU,(0)‖
‖μU,(0)‖ (14)

Preferred variety is depicted graphically for a two-
dimensional space in Fig. 2b. In the figure, as the vector
between μU and μU,(0) grows in length, Mv also increases.
If objectives are constrained to be positive, Mv will be
bounded between 0 and 1; otherwise, values greater than 1
for Mv will be possible, indicating the percent improvement
of the formulation space over the initial space. In situations
where a designer has not yet settled on specific objective
weights, this metric may be of particular interest to him
or her as a means of showing overall improvement of the
Pareto frontier.

5.3 Quality—best design alternative

The metric for the quality of the exploration process, Mq

is measured in terms of the “best” design alternative (see
Fig. 2c), or

Mq = J (μ∗,(0)) − J (μ∗)
|J (μ∗,(0))| (15)

where μ∗,(0) is the best design alternative at the beginning
of the exploration process, μ∗ is the best design alternative
at the end of formulation exploration, and J is an aggre-
gate objective function (AOF). The AOF is used here to
determine “quality” for two reasons. First, if formulated
properly, the AOF helps to capture the designer’s prefer-
ence in the search. Second, the majority of engineering
applications in optimization involve the formation of an
AOF, making it a practical measure for quality (Messac
and Puemi-Sukam 2000). Many methods exist for formulat-
ing the AOF such as weighted sum methods (Steuer 1986),
compromise programming methods (Chen et al. 1999), and
physical programming (Messac and Mattson 2002). The

most suitable method for each specific problem is deter-
mined by the designer. If an AOF is never formally defined,
then this metric can be calculated using an even weight for
all objectives, essentially assigning values to solutions based
upon their Euclidean distances to the origin.

5.4 Exploration value to effort ratio

Formulation space exploration must be advantageous in
order to be useful. As the name suggests, the exploration
value to effort ratio is defined as

ε ≡ value

effort
(16)

where value can be defined as any individual metric or com-
bination of the metrics defined above. For instance, value
could be assessed by the best design alternative with (15).
The effort can be measured in terms of coding complexity
(Halstead 1977; McCabe 1976), number of function calls
in the optimization algorithm, or computation time. Regard-
less of method, there is an associated cost with formulation
space exploration; therefore, it is pivotal to monitor the met-
rics described in this section to ensure that value is being
added through the exploration process. When the explo-
ration process ceases to produce novel design alternatives,
improve objective values, or discover new “best” designs
according to the user-defined AOF, the formulation space is
no longer diverging and subsequent exploration will likely
decrease ε.

5.5 Discussion

The metrics are intended to be a design tool, where the
designer can review the metrics after each optimization
formulation to determine if “value” is being added by
the exploration process. This is critical because explo-
ration is likely to occur in more than two or even three
dimensions, making it difficult to fully comprehend the for-
mulation space. For instance, the formulation spaces for
the two bar truss example shown in Fig. 1e and f are
only two-dimensional representations of multidimensional
spaces (i.e., the true variable and objective formulation
spaces respectively span the variables B, t , H , and d , and
the objectives M , δ, σ , and σbuckling). The metrics, how-
ever, easily extend into any number of dimensions. At the
end of the two bar truss exploration process, Mn = 5.315,
Mv = 3.346, and Mq = 5.624. Each metric indicates that
the exploration process has added significant value over the
original formulation.

The metric values for the exploration sequence can be
tracked and presented graphically to the designer after each
new formulation (see Fig. 4 in Section 6). When the met-
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ric values stop improving, the designer will know that the
formulation space may no longer be diverging in a useful
manner. Since the designer is reviewing the results of the
optimization process after each iteration, the designer liter-
ally becomes part of the optimization loop, using his or her
judgment to help guide the exploration process.

A noted weakness in the provided metrics is their depen-
dency on the original formulation. Each metric is scaled
to show an improvement with respect to that formula-
tion, which means that identical final formulation spaces
may exhibit differing values for these metrics, due to dif-
ferences in the original formulations of the exploration
sequences. This dependency suggests that these metrics
are more effectively used as a means of recognizing the
amount of improvement of a particular design space for a
given sequence of formulations, rather than as a comparison
between different formulation sequences.

6 Case study: conceptual sizing of an aircraft

The purpose of this case study is to illustrate how to use for-
mulation space exploration presented in Section 3 to search
a product’s design space in both a divergent and convergent
manner during conceptual design. As part of the study, we
quantify the benefits and limitations of the dynamic opti-
mization problem formulation from Section 4, and show
how to interpret and utilize the metrics from Section 5.
The focus here is not to defend the practicality of the pro-
posed product or its analysis model, but rather to show how
the methods presented in this paper could be used in the
development of a new product.

The case study is based upon the conceptual sizing
problem of an antisubmarine warfare aircraft presented by
Raymer (2006), where a rudimentary analytical model for
sizing any aircraft from a conceptual sketch is developed
from statistical and historical data. The conceptual sketch
for this case study is shown in Fig. 3a, and the mission
profile in (b). The model inputs and outputs are summa-
rized in Table 3. A total of 17 independent design objects
and 11 dependent design objects are included in the model.
This model is well suited for formulation space exploration

Table 3 Summary of inputs and outputs to the antisubmarine warfare
aircraft concept model

Inputs Outputs

Weight of payload Wetted aspect ratio

Weight of crew Maximum lift to drag ratio

Cruise speed Lift to drag ratio during cruise

Wing aspect ratio Lift to drag ratio during loiter

Wetted area ratio Unknown fuel-weight

Cruise range fractions of mission

First loiter time Take-off weight

Second loiter time

Known fuel-weight

fractions of mission

Empty weight fraction

model coefficients

because it is a well-known example of conceptual design,
where the expressed intent for its use is in evaluation and
refinement, with the customer, of the design requirements
(Raymer 2006).

Eight optimization problem formulations are created here
using P2 as the template; each formulation is summarized
below:

– Formulation 0—Maximize cruise range and minimize
take-off weight subject to lower and upper constraints
on all model outputs and by allowing the wing aspect
ratio and cruise range to vary between side constraints.
All other model inputs are fixed independent design
objects (i.e., fixed design parameters).

– Formulation 1—Same as Formulation 0, except we
allow the weight of the payload to vary.

– Formulation 2—Same as Formulation 1, except we
allow the wetted area ratio vary.

– Formulation 3—Same as Formulation 2, except we
add the weight of the payload as a maximized objec-
tive and the total fuel-weight fraction as a minimized
objective.

0 1
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7

KEY 
0-1: Warm-up/Take-off
1-2: Climb 
2-3: Cruise 1 
3-4: Loiter 1 
4-5: Cruise 2 
5-6: Loiter 2 
6-7: Land

(a) (b)

Fig. 3 a Antisubmarine warfare aircraft conceptual sketch. b Flight mission details. Images are adapted from Raymer (2006)
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– Formulation 4—Same as Formulation 3, except we
remove the total fuel-weight fraction as a minimized
objective.

– Formulation 5—Same as Formulation 4, except we
change input values to simulate a composite aircraft
instead of one fabricated out of aluminum.

– Formulation 6—Same as Formulation 4, except we
allow the cruise speed to vary and change input values
to simulate a low-bypass turbofan engine rather than a
high-bypass turbofan.

– Formulation 7—Same as Formulation 4, except we
allow the first mission loiter time to vary.

The results from the formulation exploration process are
shown in Fig. 4. In (a), a two-dimensional slice of the formu-
lation space is shown for cruise range and take-off weight
(shown as the lighter shaded region, with the baseline for-
mulation shown as the darker shaded region and all other
formulations shown as dashed lines); in reality, the for-
mulation space is a three-dimensional since we have three
objectives in this problem. For this reason, we have also
plotted exploration metrics in (b), which easily extend into
n-dimensional space. The novelty metric at the end of the
exploration process is 2.13, meaning that the diagonal of the
hypercube containing the entire formulation space is 2.13
times larger than the baseline. The preferred variety metric
ends at a value of 0.44, meaning that the distance between
the formulation utopia point and the baseline utopia point
0.44 times the distance of the baseline utopia point. The
quality metric is at 0.65, indicating that the AOF value,

which in this case is determined with a weighted sum, of
the formulation space is 0.65 times better than the baseline
AOF value.

An important aspect of the exploration metrics is to help
indicate when the formulation space is no longer diverg-
ing. From Fig. 4b, we see that the average slope of the
exploration metrics near the end of our exploration is low,
which is a good indicator that the process may be com-
plete. Note that at Formulation 5, the quality metric (Mq )
reached its maximum value. If Formulation 5 had been for-
mulated first in the exploration process, there would have
been no improvement in Mq in subsequent formulations. In
other words, the value of Mq would never increase and the
value of Mq would remain at zero. However, there may have
been improvement in the other metrics. If the designer was
only interested in Mq , then they may not have explored the
remaining formulations.

The benefits from formulation space exploration are not
only measured by the metrics above, but by what infor-
mation is gleaned from the process. It is clear that various
trade-off studies are possible through formulation space
exploration. Obtaining the Pareto frontier for the formula-
tion space provides a rich set of design alternatives from
which the designer can “shop” for the most suitable solu-
tion (Balling 1999). For example, consider points α and β

in Fig. 4a. Point α is a design alternative from the first
optimization formulation, and point β is a design alterna-
tive from the three-dimensional formulation space Pareto
frontier, originating from Formulation 5 where a compos-
ite aircraft is simulated. These designs are juxtaposed in
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Fig. 4 a Formulation objective space for cruise range and take-off weight. Darker shaded region is baseline formulation. b Novelty, preferred
variety, and quality metrics versus formulation number
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Table 4 Details about two design alternatives in the formulation space

Weight of Wing Wetted Range Weight Wetted Max lift Total Take-off

payload aspect area (Nm) fraction aspect to drag fuel weight weight

(lbs) ratio ratio coefficient ratio ratio fraction (lbs)

Design α 10,000 8.40 5.50 1520 1.00 1.53 16.96 0.36 53,639

Design β 10,154 8.17 5.19 1715 0.95 1.57 17.24 0.39 54,184

Table 4. While the weight of the payload and take-off
weights are similar, the range for Design β is significantly
greater.

We note that formulation space exploration can be done
with P1 or P2. However, with P2 it is simpler to formu-
late and reformulate the optimization problem. According
to Table 2, the formulation space exploration process pre-
sented in this section would require 27 lines of code to be
changed if P1 is used, whereas with P2 no lines of code
need to be changed (only the values of yl , yu, zl , zu, and w
need to be changed). However, as stated in Section 4, there
are some limitations. To illustrate, we formulate the base-
line problem (Formulation 0) using P1 and P2, and execute
it with various optimization algorithms including two gra-
dient based methods with a weighted-sums AOF: sequential
quadratic programming (SQP) and Interior-point; and an
evolutionary algorithm: genetic algorithm. The computation
time and function call count for each algorithm are summa-
rized in Table 5. As shown, P1 outperforms P2 when using
the gradient-based algorithms; however, no significant dif-
ference is seen in the evolutionary algorithm. The baseline
problem includes 2 design variables as part of 17 indepen-
dent design objects. When the ratio of design variables to
independent objects is low, as it is here, P2 does not per-
form as well as P1 with gradient-based algorithms. As the
ratio approaches one, the computational efficiency differ-
ences between P1 and P2 diminishes. For this example, the
computation time difference between P1 and P2 is only a
few seconds.

Another way to compare the performance between P1
and P2 is with the exploration value to effort ratio (see
Section 5). In this example, we choose value (see (16)) to

Table 5 Comparison of computation performance for P1 and P2 on
an Intel Core 2 Quad 2.67 GHz processor

SQP Interior-point Genetic algorithm

Time Function Time Function Time Function

(s) count (s) count (s) count

P1 2.37 48 2.66 77 28.60 1,240

P2 9.08 288 11.18 369 28.07 1,240

be the sum of all exploration metrics above—Mn, Mv, and
Mq—multiplied by 100 for proper scaling. The value added
is the same whether we use P1 or P2. Effort is approximated
as the time it takes to code each formulation plus the compu-
tation time. This method for approximating effort does not
take into account the time spent interpreting results, plan-
ning future formulations, etc. Nonetheless, it is sufficient for
our purpose here. We will assume that it takes 10 s to change
each line of code (27 lines for P1 and 0 for P2). Using
the genetic algorithm computation times from Table 5, the
exploration value to effort ratio for P1 is 1.08, and for P2
is 11.47. If we instead use an SQP algorithm in conjunction
with the normal constraint method (Messac and Mattson
2004) to generate 30 Pareto optimal solutions, the value to
effort ratio for P1 is 0.94, and for P2 is 1.18. In each case,
P2 outperforms P1.

7 Conclusion

We have presented an optimization strategy that facilitates
both convergence and divergence in design. Using this strat-
egy, a computational search is not confined to the search
space defined initially by an optimization problem for-
mulation. Instead, a designer may search the formulation
space, which we have defined as the union of all design
variable and objective spaces identified by the designer
as being valid and pragmatic problem formulations. This
can open the door to early stage design divergence with
computational assistance. As part of this strategy, we have
introduced a generic, vector/matrix-based, dynamic mul-
tiobjective optimization problem that allows the designer
to easily modify and adapt the optimization problem as
needed. Additionally, we have provided a set of exploration
metrics to help guide the designer during the formulation
space exploration process. In so doing, we provide designers
with a method to obtain valuable design information earlier
in the design process, and ultimately make better decisions
in the early stages of design.
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Appendix: Pseudo Codes

Standard Multiobjective Optimization Code (P1)

1 Define Design Variable Limits...
2 Define Design Parameter Values...
3 Construct x0
4 Construct xL
5 Construct xU
6 Construct P
7 Call [x*, mu*] = optimize(x0, xL, xU, P)
8
9 function [objectives] = objectiveFunction(x, P)

10 Call [outputs] = model(x, P)
11 Calculate objectives
12
13 function [g, h] = constraintFunction(x, P)
14 Call [outputs] = model(x, P)
15 Define Equality Constraint Values...
16 Calculate h...
17 Define Inequality Constraint Values...
18 Calculate g...
19
20 function [outputs] = model(x, P)
21 Extract x...
22 Extract P...
23 Calculate outputs...

Dynamic Multiobjective Optimization Code (P2)

1 Define Independent Design Object Limits...
2 Define Dependent Design Object Limits...
3 Construct y0
4 Construct yL
5 Construct yU
6 Construct zL
7 Construct zU
8 Define w...
9 Call [x*] = optimize(y0, yL, yU, zL, zU, w)

10
11 function [objectives] = objectiveFunction(y, w)
12 Call [z] = model(y)
13 Calculate x = [y;z]
14 Calculate objectives = w*x
15
16 function [constraints] = constraintFunction(y, zL, zU)
17 Call [z] = model(y)
18 Calculate constraints = [zL-z; z-zU]
19
20 function [z] = model(y)
21 Extract y...
22 Calculate z...
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