
Struct Multidisc Optim (2013) 48:763–775
DOI 10.1007/s00158-013-0925-6

RESEARCH PAPER

The smart normal constraint method for directly generating
a smart Pareto set

B. J. Hancock · C. A. Mattson

Received: 18 October 2012 / Revised: 7 February 2013 / Accepted: 7 March 2013 / Published online: 19 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In design situations where a single solution must
be selected, it is often desirable to present the designer
with a smart Pareto set of solutions—a minimal set of non-
dominated solutions that sufficiently represents the tradeoff
characteristics of the design space. These sets are gener-
ally created by finding many well-distributed solutions and
then either filtering out the excess ones or searching more
closely in those regions that appear to have significant trade-
off. Such methods suffer from the inherent inefficiency of
creating numerous solutions that will never be presented
to the designer. This paper introduces the Smart Normal
Constraint (SNC) method—a Pareto set generation method
capable of directly generating a smart Pareto set. Direct gen-
eration is achieved by iteratively updating an approximation
of the design space geometry and searching only in those
regions capable of yielding new smart Pareto solutions. This
process is made possible through the use of a new, compu-
tationally benign calculation for identifying regions of high
tradeoff in a design space. Examples are provided that show
the SNC method performing significantly more efficiently
than the predominant existing method for generating smart
Pareto sets.

Keywords Multiobjective optimization · Minimal Pareto
set · Smart Pareto filter · Normal constraint method ·
Direct generation

B. J. Hancock · C. A. Mattson (�)
Department of Mechanical Engineering,
Brigham Young University,
Provo, UT 84602, USA
e-mail: mattson@byu.edu

1 Introduction and literature survey

Engineering design often involves making decisions
between two or more conflicting objectives. When the des-
giner faces such decisions, more than one solution may
exist that will meet the design goals. In these multiobjec-
tive problems, knowledge about the Pareto frontier of the
design space can help designers sift through the potentially
large body of feasible solutions. The Pareto frontier is the
set of all solutions—known as Pareto optimal solutions—
for which no other solution is better in all objectives (Pareto
1964). Given a set of Pareto optimal solutions, a designer
can recognize what the various optimal solutions might be,
depending on the value associated with each objective in
the problem. Pareto sets are therefore especially useful in
understanding the tradeoff relationships between particular
objectives in a multiobjective problem.

1.1 Evolution of Pareto set generation algorithms

Many algorithms exist for generating Pareto sets. However,
not all algorithms are equally efficient or effective at rep-
resenting the design space. The strategies used to generate
Pareto sets have evolved through a number of phases as
the discipline of multiobjective optimization has matured
(Mattson et al. 2004). In phase one, attempts were made
to obtain any set of Pareto solutions, from which the final
design could be selected. In phase two, specific sets of
Pareto optimal solutions were sought that were equally
distributed along the Pareto frontier. These equally dis-
tributed sets could be viewed as superior to others because
they guarantee that no significantly large portion of the
Pareto frontier is unrepresented. In the most recent phase
of the evolution of Pareto set generation strategies, a push
has been made to obtain minimal sets of Pareto optimal

mailto:mattson@byu.edu

764 B. J. Hancock, C. A. Mattson

solutions that adequately represent the tradeoff properties
of the entire Pareto frontier. Because a single design is
eventually selected from the entire design space in most
design scenarios, it is desirable to somehow provide the
designer with as few designs as possible, while still inform-
ing him or her of all the possible potential regions of
high tradeoff in that space. This minimal set that simp-
lifies the choice of a final design without significant
loss of information has been termed a smart Pareto set
(Mattson et al. 2004).

Under the current state of the art, this smart Pareto set
is generally created by producing a well-distributed set, and
then filtering out all solutions that do not represent a sig-
nificant amount of tradeoff between objectives with respect
to any other solution already in the set. It is built on the
assumption that a designer is often willing to sacrifice a
small amount in one objective if a large benefit in another
objective could be gained. Thus, fewer designs are needed in
these regions of relatively insignificant tradeoff in order to
provide the designer with a sufficient amount of information
about what combinations of objective values are obtainable.

In this paper, the authors propose a significant improve-
ment to this third phase of Pareto set development—direct
generation of smart Pareto sets, in contrast to using a smart
Pareto filter. The smart Pareto filter approach is to first
generate many solutions, then reduce the set by remov-
ing solutions that are deemed insignificantly different from
other Pareto solutions. While this approach is beneficial
in many instances, at least one potential drawback is the
computational inefficiency of generating a large number
of designs, only to remove a significant portion of them
from consideration. Therefore, a desirable goal would be
to generate only those solutions that will be of interest to
the designer; in other words, to directly generate the smart
Pareto set. In this paper, an algorithm is proposed that
directly generates a smart Pareto set of solutions through
the use of a new scalar term known as the smart distance
between solutions. In nearly all cases, this results in a sig-
nificant decrease in the amount of required function calls to
produce a smart Pareto set.

1.2 Survey of minimal representation algorithms

In situations where the design variable space includes con-
tinuous variables, the Pareto frontier can include an infinite
number of potential solutions. Even in situations where
it is theoretically possible to obtain all solutions, this is
often prohibitively computationally expensive (Ruzika and
Wiecek 2005) and impractical to portray graphically, partic-
ularly in problems with many objectives (Aittokoski et al.
2009). Furthermore, such a large amount of data may be
difficult for the designer to analyze. As a result, many meth-
ods have been created with the intent of abbreviating or

consolidating the set of Pareto solutions to be presented to
the designer. In-depth surveys of multiobjective optimiza-
tion methods as a whole can be found in Ruzika and Wiecek
(2005); Marler and Arora (2004).

Many algorithms exist for identifying solutions located
on regions of the Pareto frontier known as “knee points,”
which occur where an improvement in one objective results
in significant worsening of at least one other objective
(Bechikh et al. 2010; Schutze and Laumanns 2008; Deb and
Tiwari 2006). These solutions can be identified and pro-
vided to the designer after the full Pareto frontier has been
found, or optimization can be performed specifically in the
region of a knee point after developing an approximation
of the Pareto frontier (Rachmawati and Srinivasan 2009).
Another method for minimizing the number of final solu-
tions in a Pareto set is known as data clustering. It consists of
grouping multiple points into clusters based upon their com-
pactness, connectedness, or spatial separation from other
clusters, in order to select a few solutions that represent
each of the relatively unique regions of the Pareto fron-
tier (Aittokoski et al. 2009; Handl and Knowles 2007).
Evolutionary algorithms have been used in many of these
instances to locate knees and identify clusters (Rachmawati
and Srinivasan 2009; Zitzler and Thiele 1998). Also, as
mentioned before, a filtering method may be used to iden-
tify regions of practically insignificant tradeoff (PIT) and
remove solutions that provide little unique information to
the designer (Mattson et al. 2004).

Apart from other strengths and weaknesses that these
various methods may have, they all have in common
the inefficiency that comes with generating many solu-
tions that will never be considered by the designer. All
of these methods present the designer with a subset of the
solutions that they have generated. Currently unaddressed
in the literature is the development of a method capable
of producing primarily just those solutions that will be
a part of the minimal set provided to the designer. The
method proposed in this paper to achieve that purpose
is partially based upon the Normal Constraint (NC) met-
hod (Messac et al. 2003). The literature concerning the
NC method and its applicable variations is reviewed in
Section 2.3.

The remainder of this paper is organized as follows: we
begin in Section 2 by reviewing the traditional multiob-
jective optimization problem formulation and the normal
constraint method of generating an evenly distributed Pareto
set. In Section 3 we introduce the primary mechanism that
enables direct generation of smart Pareto sets. In Section 4
we introduce and discuss the SNC method analytically
and mathematically. In Section 5 we demonstrate the effi-
ciency of the SNC method with three popular example prob-
lems and observe its utility. Finally, in Section 6 we offer
concluding remarks.

The smart normal constraint method for directly generating a smart Pareto set 765

2 Technical preliminaries

This section provides the traditional mathematical defini-
tion of a multiobjective optimization problem (MOP) and
identifies the important features that are required for under-
standing the concepts presented throughout this paper. The
NC method is then introduced along with two of its vari-
ations, which together serve as a foundation for the SNC
method.

2.1 The multiobjective optimization problem

The generic MOP can be stated as Problem 1 (P1):

min
x

{μ1(x), μ2(x), ... , μn(x)} (n ≥ 2) (1)

subject to

g(x) ≤ 0 (2)

h(x) = 0 (3)

xl ≤ x ≤ xu (4)

where x is a vector of design variables, µ is a vector
of design objectives, g and h are inequality and equality
constraint vectors, respectively, and xl and xu are vec-
tors containing the lower and upper bounds of the design
variables. Here and throughout this paper, the variable n

refers to the number of objectives in the problem. In this
form, P1 produces a set of Pareto optimal solutions. In
Section 2.2, a common Pareto set generation algorithm is
presented whose primary strategy for generating individual
solutions serves as the basis for the SNC method proposed
in this paper.

Each point in the design space of an MOP represents
a feasible design solution. Therefore, for the remainder of
this paper, these two terms (point and solution) will be used
interchangeably. Two important types of reference points
which exist in the design space of every MOP are defined
below.

Anchor points are specific points in the feasible design
space that correspond to the minimum values of the respec-
tive individual objectives. The anchor point for the i-th
objective is expressed as

μi∗ = [μ1(xi∗) μ2(xi∗) ... μn(xi∗)]T (5)

where xi∗ is defined as xi∗ = arg min
x

μi(x) subject to the

constraints of the P1, given by (2) and (4).
Anti-anchor points are specific points in the feasible

design space that correspond to the maximum values of the
respective individual objectives. The anti-anchor point for
the i-th objective is expressed as

μi◦ = [μ1(xi◦) μ2(xi◦) ... μn(xi◦)]T (6)

where xi◦ is defined as xi◦ = arg max
x

μi(x) subject to the

constraints of the P1, given by (2) and (4).

2.2 Review of the normal constraint method

Under the Normal Constraint (NC) method, the MOP is
converted into a series of single-objective optimization
(SOO) problems, each with a different set of additional
linear constraints calculated to produce a Pareto solu-
tion in a particular region of the design space. The NC
method consists of 5 steps, which we will outline in this
section in the context of a bi-objective sample problem,
shown in Fig. 1. In problems where n > 2, the lines
described in these steps are replaced by their higher dimen-
sional counterparts, planes or hyperplanes. Further details
on the method may be found in Ismail-Yahaya and Messac
(2002).

Step 1: Generation of reference points
Use (5) to locate the anchor points. In Fig. 1, the anchor
points have been represented by stars.

Step 2: Construction of utopia line vector(s)
The line connecting the anchor points is known as the
utopia line. Define the utopia line vector Nj using the
equation

Nj = μj∗ − μn∗ ∀j ∈ (1, 2, ..., n − 1) (7)

Thus, in the case of n > 2, n − 1 utopia line vectors
are defined, all of which point to μn∗, the anchor point
corresponding to dimension n.

2

1

1*

2*

utopia line

no
rm

al
co

ns
tra

int

Ui

δ1

Pi

reduced feasible
design space

Fig. 1 Graphical representation of the NC method for a bi-objective
problem

766 B. J. Hancock, C. A. Mattson

Step 3: Calculation of utopia line increments
Based upon the number of utopia line points mj that the user
desires in each utopia line direction Nj , an increment δj is
created, using the equation

δj = 1

mj − 1
∀j ∈ (1, 2, ..., n − 1) (8)

Step 4: Generation of utopia line points
Generate each utopia line point using equation

Ui =
n∑

j=1

α
j
i μj∗ (9)

where the non-dimensional parameter α
j
i satisfies

0 ≤ α
j
i ≤ 1 (10)

and

n∑

j=1

α
j
i = 1 (11)

Note that by incrementing αj by δj between 0 and 1, an even
distribution of points is generated between the provided
utopia line points.

Step 5: Single-objective optimization
For each utopia plane point Ui solve Problem 2 (P2):

min
x

μn(x) (12)

subject to (2) and (4) as well as

Nj(μ(x) − Ui)
T ≤ 0 ∀j ∈ (1, 2, ..., n − 1) (13)

This additional linear constraint given by (13) excludes all
points found below the line that intersects the utopia line
point and is orthogonal to the utopia line. Thus, from each
utopia line point is produced a corresponding point on the
Pareto frontier. Figure 1 shows the Pareto point Pi that
was produced by P2 using utopia line point Ui . When P2
is solved using a gradient-based approach, locally Pareto
points may be found by the NC method where the Pareto
frontier is disjointed. For this reason, users are encour-
aged to use the NC method in conjunction with a global
Pareto filter, as described in Messac et al. (2003). In appli-
cations difficult for gradient-based algorithms, other SOO
algorithms may be used, such as genetic algorithms.

2.3 NC method improvements

Since the inception of the NC method in 2002, this algo-
rithm has been widely used and researched. Consequently,
many variants and improvements of the NC method have
been proposed. A year after introducing the NC method, the
original authors proposed the normalized normal constraint
(NNC) method, which mitigates objective scaling issues by
normalizing the design objective space before carrying out
the steps of the NC method (Messac et al. 2003). Means
of improving the distribution of Pareto solutions by modi-
fying or replacing the utopia plane have been suggested by
Martinez et al. (2007); Sanchis et al. (2008); Motta et al.
(2012). Hybrid algorithms combining the NNC method with
evolutionary algorithms have been proposed in order to
avoid local optima (Martinez et al. 2007, 2009). Martinez
et al. (2007) also recently proposed the uniform normal-
ized normal constraint method, which uses the distribution
of known Pareto solutions to guide it in searching for a new
set of Pareto solutions that are more uniformly distributed
along the Pareto frontier.

While the many variants reviewed here have improved
the effectiveness and flexibility of the NC method, they
focus on the second phase of Pareto set generation
algorithms—the generation of well-distributed sets. Still
lacking in the literature are modifications to the NC method
that will carry it into the third phase—the generation of
smart Pareto sets.

Two other variants in particular are significant for the
purposes of this paper because the fundamental princi-
ples behind them are integral to the SNC method. They
are briefly explained here, but for a full understand-
ing of these methods and how to implement them, see
Messac and Mattson (2004) and Boyce and Mattson (2008),
respectively.

In order to guarantee even representation of the entire
Pareto frontier, Messac and Mattson propose that for prob-
lems where n > 2, the utopia plane be extended to include
not only the region bounded by the anchor points, but
rather all regions of the utopia plane that could produce a
Pareto point in the design space upon the evaluation of P2
(Messac and Mattson 2004). This extended region of the
utopia plane is bounded by the anchor points as well as the
perpendicular projections of the anti-anchor points. With-
out an extended utopia plane, there is no guarantee that the
generated set will represent the complete Pareto frontier for
problems where n > 2.

Because a design space with a disjointed Pareto set
is capable of performing multiple single objective optimiza-
tions that produce the same Pareto point, Boyce and
Mattson propose a method of recognizing which utopia
plane points will reduce redundant Pareto points and avoid-
ing these SOOs (Boyce and Mattson 2008). This is done

The smart normal constraint method for directly generating a smart Pareto set 767

by recognizing when at least one of the normal linear con-
straints used in generating a point is not active. When this
is the case, one can remove all utopia plane points that lie
in the region between the normal constraints that actually
generated the given point (but are separated from it) and the
parallel normal constraints that would be generated directly
through the given point such that all normal constraints
would be active. Figure 7c in Section 4.3.3 shows a situa-
tion in which this improvement could potentially eliminate
a number of redundant SOOs.

3 Mechanisms for smart Pareto set generation

Mattson et al. (2004) first introduced the concept of a
smart Pareto set, based upon the assumption that “when the
tradeoff is significant. . . a designer is willing to give up an
insignificant amount in one objective to gain significantly
in another.” In this paper, direct generation of a smart Pareto
set is achievable through the use of a scalar value that can
be assigned to any point in the design space based upon its
distance and direction from all other Pareto solutions. To
fully appreciate the value of this new technique, we must
first consider the two mechanisms which have enabled past
attempts at producing smart Pareto sets of points—the smart
Pareto filter (Mattson et al. 2004) and smart constraints
(Haddock et al. 2008).

3.1 The smart Pareto filter

The fundamental concept of the smart Pareto filter is
that there is a user-defined shape—known as the Practi-
cally Insignificant Tradeoff (PIT) region—surrounding each
Pareto solution, inside of which no other Pareto solution
may reside. This PIT region is depicted in Fig. 2a for a
bi-objective case. The user defines the PIT region by pro-
viding values for two control parameters �t and �r. The
smart Pareto filter operates by arbitrarily selecting a point
in the Pareto set and removing all points that lie within
the PIT region surrounding it. This process is then repeated
for all remaining points in the set. One strength of this
approach for creating a smart Pareto set is that it may be
used in conjunction with any algorithm capable of produc-
ing a well-distributed Pareto set. A weakness, however, is
that with this approach, the designer could potentially spend
valuable resources generating solutions in areas of insignif-
icant tradeoff that will be discarded without providing any
valuable information to the designer.

3.2 Direct generation by smart constraints

Haddock et al. (2008) suggested a method of producing a
smart Pareto set with a new type of PIT region formed by

2

1

Δr1

Δr2

Δt1

Δt2

2

1

Δb1

Δb2

Δs1

Δs2

(a)

(b)

Fig. 2 The user-defined PIT region (shaded) surrounding a point
when using (a) the smart Pareto filter (Mattson et al. 2004) and
(b) smart constriants (Haddock et al. 2008)

additional linear constraints, known as smart constraints.
User-provided values for parameters �b and �s define this
region, as shown in Fig. 2b. For details on how the smart
constraints are formulated, see Haddock et al. (2008). The
developers of this method found it had significant draw-
backs. Because each Pareto solution discovered introduces
a new constrained PIT region that is retained in subsequent
SOOs, the reduced feasible design space becomes highly
multimodal, causing difficulties for gradient-based algo-
rithms. They concluded about their own method, “it will
nearly always take more function evaluations to directly
generate smart Pareto sets, than it would be to simply gen-
erate numerous solutions, and remove unwanted solutions
by smart filtering, as proposed by Mattson et al,” (Haddock
et al. 2008).

3.3 Direct generation by smart distance

As will be demonstrated in Section 4 and 5, direct gener-
ation of a smart Pareto set is possible with the assistance
of a scalar term—the smart distance between points in

768 B. J. Hancock, C. A. Mattson

the design space. For this mechanism, the shape of the
PIT region around a point is called a Lamé curve in 2D
or a hyper-Lamé curve in nD (see Fig. 3). The PIT region
consists of all points that lie on or within the curve. These
points all have a smart distance s ≤ 1 from the center point.
Because all members of a smart Pareto set do not lie within
the PIT regions of any other member, this means that each
will have a smart distance of s ≤ 1 with respect to all other
members in the set. The formula for the smart distance
between two points is given by the equation

s = ‖Ad‖p (0 < p ≤ 2) (14)

where

A =

⎡

⎢⎢⎣

1
a1

. . . 0
...

. . .
...

0 . . . 1
an

⎤

⎥⎥⎦ (a > 0) (15)

0

0 0

2

1

(a)

(b)

2 1

3

a1
a2

a3

a1

a2

Fig. 3 The user-defined PIT region (shaded) surrounding a point
when using smart distance for a (a) 2D and (b) 3D case. Mathematically,
these regions contain all points with a smart distance s ≤ 1

d is a vector between the two points in the design space,
and ‖Ad‖p follows the accepted formula for calculating
the p-norm of a vector (Rynne 2007), which in this case is
given by

‖Ad‖p = (

n∑

i=1

|Ai,idi |p)
1
p (16)

The variables a and p are user-defined values that allow
the user to determine the distribution of the smart Pareto
points that will be generated for that particular problem.
Each value ai corresponds to objective i in the problem and
may be interpreted as the amount of change in that objec-
tive that would constitute a significant difference between
two points in the user’s mind if all other objectives remain
practically unchanged. As shown in Fig. 3, any Pareto point
that lies within the distance ai of another Pareto point with-
out significant tradeoff in one or more other objectives will
fall within the PIT region and be discarded. Thus, larger val-
ues for the elements of A will result in fewer points in a
smart Pareto set. The parameter p affects the curvature of
the PIT region and therefore controls the extent to which
high tradeoff between objectives is required in order for
two points nearby each other to both remain in the smart
Pareto set. The effect of p on the shape of the PIT region
is illustrated in Fig. 4. While the method will work for any
value of p between 0 and 2, it is assumed that for most
purposes, the user will select a value between 0 and 1,
resulting in a shape that resembles the PIT regions of other
mechanisms.

As with the other mechanisms, once these user-defined
values have been given, the algorithm can run autonomously
until a complete smart Pareto set has been generated.
The lack of dependence on real-time input from a user
allows the algorithm to work quickly. Because the user
has stated explicitly what differences in tradeoff he or
she considers to be significant enough to merit represen-
tation in the final smart Pareto set, it is the user’s pref-
erences that ultimately determine the distribution of that
set.

The mechanism of smart distance is unique in that it defi-
nes a PIT region by a single scalar value (smart distance)
rather than by the region bounded by multiple lines with dif-
fering equations. As will be seen in Section 4, this allows
for an algorithm to identify not just whether or not a new
point is a smart Pareto point, but also to what extent the
point is “smart.” This ability is what enables the SNC
method to more efficiently search a design space for a full
smart Pareto set than existing methods for identifying smart
Pareto sets.

The smart normal constraint method for directly generating a smart Pareto set 769

(a) (b)

(c) (d)

p = 0.2

p = 1.0

p = 0.2

p = 1.0

Fig. 4 The effect of the user-defined parameter p on the shape of the
smart distance PIT region where all values of (a) are equal

4 The smart normal constraint method

This section introduces and discusses the Smart Normal
Constraint (SNC) method. The method and its advantages
over existing methods will be first discussed analytically,
then described mathematically for an n-objective case.
Numerical examples for a 2D, 3D, and 5D case are provided
in Section 5.

4.1 An analytical description of the SNC method

The purpose of the SNC method is to directly generate
smart Pareto sets in a computationally efficient way. The
process for generating this smart Pareto set using the
SNC method is illustrated for two dimensions in Fig. 5.
Figure 5a shows that the anchor points have been iden-
tified and a line has been drawn between them that is
divided up by a series of points. At this stage in the pro-
cess, the SNC method is identical to the NC method.
The main theoretical concept underlying the SNC method
is that the constructed line is an approximation of the
Pareto frontier. Clearly, for this first iteration, it is a low
fidelity approximation. The approximation is improved,
however, as each new Pareto point is found during the
course of the optimization. The approximation has visi-
bly improved in Fig. 5b, for example, as we now have
two segments of piece-wise linearly distributed points form-
ing the approximation instead of one. Having an updated
approximation of the Pareto frontier provides the algorithm
with information about where new smart Pareto points are

2

1

2

1
(a)

(b)

(c)

linear constraint normal to
utopia line

δmin}

2

1

Pareto
frontier

approximation

updated
Pareto frontier
approximation

Fig. 5 The SNC method in progress for a bi-objective case: (a) after
the first SOO, (b) after the second SOO, using an updated Pareto fron-
tier approximation, and (c) upon completion, with a smart Pareto set.
Pareto points are hollow, utopia line points are shaded, and approxi-
mation points are filled. Note that the PIT Lamé curves around each
Pareto point are not used as constraints. They simply illustrate those
regions that are within one smart distance of any Pareto point

most likely to be found. Before each SOO, benign smart
distance calculations are performed between the approx-
imation points and all known (currently existing) Pareto
points. For each approximation point, the nearest known
Pareto point (in terms of smart distance) is identified.
The approximation point with the largest smart distance
to its nearest known Pareto point is selected as the point
that is most likely to yield a new smart Pareto point. A
normal constraint is then constructed through that point
and an SOO is performed. Repeating this process multi-
ple times results in an increasingly more accurate Pareto
frontier approximation. Fig. 5c illustrates the smart Pareto

770 B. J. Hancock, C. A. Mattson

set (hollow points) that remains once no approximation
point (filled points) is significantly different from all dis-
covered Pareto points. In other words, no approximation
point has a minimum smart distance greater than 1 with
respect to the existing set of Pareto points. At this time the
algorithm terminates.

It is worth noting that the primary strategy for creating
individual Pareto solutions is the same for both the NC
and SNC methods—linear constraints perpendicular to the
utopia line are constructed and SOOs are performed. How-
ever, in the SNC method, these constraints are constructed
through iteratively updated approximation points instead of
through utopia line points. Thus, instead of requiring the
user to predefine the number and locations of SOOs before
any information about the true shape of the Pareto frontier
is known, the SNC method allows the user to describe the
type of distribution which he or she would like to have in
the final set of solutions (through parameters a and p), and
the algorithm dynamically adjusts the spacing between the
constructed normal constraints accordingly. This allows for
a higher resolution of points in regions with large curvature,
and fewer function calls in nearly every case. In Fig. 5c,
δmin identifies the spacing of points on the utopia plane
(shaded points) that would be required for the NC method
to produce a smart Pareto set with the same resolution as the
SNC method in this example. In the Appendix, an insight-
ful flowchart highlights the similarities and differences
between the flow of the NC and SNC methods.

4.2 A mathematical description of the SNC method

The SNC method can be divided into 7 simple steps. Steps
2-7 repeat until there are no more regions of the Pareto
surface approximation that appear capable of yielding a
smart Pareto point. Once again, the terms line, plane, and
hyperplane can be interchanged to match the dimension of
the problem being solved.

Step 1: Generation of reference points
Use (5) and (6) to locate the anchor points and anti-anchor
points. While the anti-anchor points are often not Pareto
points, including them as vertices on the edges of the Pareto
frontier approximation guarantees coverage of the entire
Pareto frontier, similar to using an extended utopia plane
in the NC method (see Messac and Mattson (2004) in
Section 2.3).

Step 2: Connectivity of approximation vertices
Determine how to divide up the approximation of the
Pareto frontier into approximation segments or approxima-
tion planes. For bi-objective cases, connect each approxima-
tion vertex point to the neighboring vertices on either side of
it, as was done in Fig. 5. When n > 2, find the connectivity

of approximation vertices by linearly projecting them onto
the utopia plane and finding the Delaunay triangulation
of the projected set. Delaunay triangulation subdivides a
geometric object into contiguous simplices such that their
minimum angles are maximized. Figure 6 shows a Delaunay
triangulation of the projections of approximation vertices
onto the utopia plane. To perform this step, the authors use
the built-in Matlab function delaunayn. For more infor-
mation on how Delaunay triangulation is carried out, see
Barber et al. (1996).

Step 3: Approximation of Pareto frontier
Generate evenly spaced approximation points on each
approximation plane using (17), which is similar to (9)
for distributing points on the utopia plane in the NC
method. The anchor points, μj∗ are simply replaced with the
approximation vertices, Pk , that define each approximation
plane, according to the results of Step 2.

Si =
n∑

k=1

αk
i Pk (17)

where once again, the non-dimensional parameter αk
i satis-

fies constraints on α (see (10) and (11)), and αk is varied
from 0 to 1 with a fixed increment of δk to result in an even
distribution of approximation points over the entire Pareto
frontier. The value for δk in this equation is once again arbi-
trary, depending on how close to each other the designer
would like the approximation points to be. In practice, the
authors have found it simple and effective to set δk equal to
the shortest Euclidean distance between a center point and

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1

2

3

Fig. 6 Approximation vertices (hollow points) have been projected
onto the utopia plane (filled points) and subdivided into triangles by
Delaunay triangulation. This connectivity is used to make the planes
that together approximate the Pareto frontier

The smart normal constraint method for directly generating a smart Pareto set 771

the PIT region that defines one smart distance around it.
This may be found using the equation

δk =
∥∥∥∥min

d
‖d‖

∥∥∥∥ (18)

where d is a vector between the center point of the PIT
region and any second point on the boundary of the PIT
region, and (14) serves as an equality constraint on d with
s = 1.

A smaller value of δk will result in a greater quan-
tity of approximation points. Because all computations
performed on approximation points are relatively benign
(more approximation points will not result in more func-
tion calls of a designer’s model, which are generally far
more computationally expensive), the efficiency of this
algorithm depends very little on selecting an ideal value
for δk .

Step 4: Removal of restricted approximation points

Some SOOs provide information about certain regions of
the Pareto frontier that will not produce smart Pareto points.
Such regions exist when the Pareto frontier is discontinu-
ous. In Step 7, these “restricted” regions are recorded. In
this step, remove from further consideration any approxima-
tion points that lie in those restricted regions of the design
space.

Step 5: Calculation of smart distances

The smart distance is calculated between each approx-
imation point and all existing approximation vertices
using (14).

Step 6: Generation of new Pareto point

Select the approximation point with the largest smart dis-
tance to its nearest known Pareto point and perform an
SOO (Problem P2) using the standard normal constraints
that intersect that point (given by (13)). In a problem where
all objectives are independent variables, the initial values
of x for P2 can be set to the coordinates of the selected
approximation point. In problems with dependent variables,
the initial values of x can be set to the linear interpolation
of the x vectors that produced each of the approximation
vertices that generated the selected approximation point’s
plane. In most cases, these selected initial values are closer
than those that could be obtained with the NC method using
only information about the utopia plane. This results in
generally fewer function calls per SOO for the SNC method
compared the NC method.

Step 7: Addition of new restrictions
Check to see if the new Pareto point is a) dominated, b)
redundant, or c) separated. If the point exhibits at least one

of these three restriction characteristics, add a restriction
for removing future approximation points in these regions
that are now known to not be capable of producing smart
Pareto points. These restrictions are explained in detail in
Section 4.3.

4.3 Approximation point restrictions

Some points generated by an SOO have special traits that
result in them being treated differently than other points
and potentially providing additional information to the algo-
rithm. This section provides descriptions of these traits and
how they are handled (see Fig. 7 for visual examples). The
restrictions corresponding to each trait can be applied in any
order and are unaffected by the presence of more than one
trait in a newly discovered point.

4.3.1 Dominated

A dominated point is typically produced by the SNC or
NC methods when there are local minima or maxima in the
design space that a gradient-based algorithm fails to recog-
nize as such. By identifying any dominated points iteratively
with a global Pareto filter (as described in Messac et al.
2003), the algorithm is able to avoid using those points as
approximation vertices, which would decrease the accuracy
of its approximation of the true Pareto frontier. Also, no
approximation points that lie on the normal constraint line
that produced a dominated solution will be considered for
future SOOs.

4.3.2 Redundant

Because the true shape of the Pareto frontier is unknown
and is only being approximated in the SNC algorithm, the
SOO based upon an approximation point that lies outside all
PIT regions may result in a Pareto point that actually does
lie within a PIT region of another Pareto point. Where this
is the case, the new Pareto point should not be kept in the
smart Pareto set. It can, however, be used as an additional
approximation vertex, which will improve the fidelity of
the approximation for future SOOs. Once again, no approx-
imation points that lie on the normal constraint line that
produced a redundant solution will be considered for an
SOO.

4.3.3 Separated

Sometimes a point is separated from the normal constraint
lines or planes that were used in the SOO that created it.
This separation indicates that there is a region of the design
space in which all SOOs would yield the same solution
(as described in Section 2.3)—in other words, the Pareto

772 B. J. Hancock, C. A. Mattson

new restricted
region

new restricted
line

new restricted
line

original normal
constraint

Si

Pi

(a)

(b)

(c)

2

1

2

1

2

1

Fig. 7 Newly generated points that exhibit the following restriction
traits have been circled: (a) dominated, (b) redundant, and (c) sepa-
rated. For the sake of simplicity, only the approximation points that
were selected for constructing the normal constraints are shown in
these plots

frontier is discontinuous. By being separated from its own
constraint lines, the point shows that certain tighter con-
straints could have been placed on it that would have yielded
the same result. Using this information, a region of the
design space can be restricted for the remainder of the opti-
mization process. That region contains all points between
the normal constraint that was used to find the point and the
parallel normal constraint that could be constructed to pass
through the new point. Points in the restricted region will
satisfy (19) and (20):

Nk(μ(x) − Si)
T ≤ 0 (1 ≤ k ≤ n − 1) (19)

Nk(μ(x) − Pi)
T ≥ 0 (1 ≤ k ≤ n − 1) (20)

Because the Pareto frontier approximation vertices gen-
erated in Step 1 span the entire feasible design space, it is
possible for some design spaces that a particular SOO will
be restricted such that no feasible solution is obtainable.
Where this occurs, a restriction may be constructed wherein
a point need only satisfy (19).

5 Numerical examples

In this section, we consider three well-known example prob-
lems from the literature to compare the effectiveness and
efficiency of generating smart Pareto sets using the SNC
method versus using the NC method with a smart Pareto
filter. For each of these examples, the SNC method was
applied using parameters that would result in a sufficiently
low number (np ≤ 20) of smart Pareto points being gener-
ated for the designer to consider. Then, the shortest distance
between any two smart Pareto points in a direction paral-
lel to the utopia plane was calculated (see δmin in Fig. 5c).
The NC was applied using this value for δj in the construc-
tion of the utopia plane (see (8)). This ensured that the two
methods had the same maximum resolution of Pareto points
on the frontier. Then, using the smart Pareto filter, a smart
Pareto set was extracted with nearly identical solutions to
the ones produced by the SNC method. With nearly iden-
tical final products, the methods are easily compared for
efficiency.

For these examples, the NC method was used with the
improvements of Messac and Mattson (2004) and Had-
dock et al. (2008) mentioned at the end of Section 2.3,
which are built into the SNC method. Thus, advantages
that the SNC method exhibits can be attributed to the

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

2

1

Fig. 8 The smart Pareto set generated by the SNC method for the
problem TNK (Tanaka et al. 1995)

The smart normal constraint method for directly generating a smart Pareto set 773

Table 1 A comparison of the efficiency of the SNC method vs. the NC* method for creating a smart Pareto set

Problem Obj Var Con # Smart Method # SOOs Func. calls per Total

Pareto points Pareto point func. calls

TNK 2 2 2 15 NC* 42 73 3066

SNC 20 66 1320

Gear box 3 7 11 10 NC* 176 100 17600

SNC 85 73 6205

WATER 5 3 7 20 NC* 2500 164 410000

SNC 26 130 3380

*Denotes that the NC method has been implemented with the improvements of Messac and Mattson (2004) and Haddock et al. (2008) from
Section 2.3 and used in conjunction with a smart Pareto filter

aspects of it that are unique from existing NC method
variations.

The three chosen problems are TNK (Tanaka et al. 1995),
a gear box design (Huang et al. 2006), and WATER (Ray
et al. 2001). TNK is notable for having concave regions
in both the horizontal and vertical directions, which causes
difficulties for many Pareto set generation algorithms.
Figure 8 shows the smart Pareto set generated by the
SNC method sumperimposed on an outline of the feasible
design objective space. The gear box design problem has
been used a number of times to demonstrate the robustness
of Pareto set generation algorithms in handling depen-
dent objective functions and multiple nonlinear constraints
(Motta et al. 2012; Sanchis et al. 2008). The problem
WATER was chosen to demonstrate the functionality of the
SNC method in problems with a large number of objec-
tives. Table 1 presents the results of all three example
problems.

The extent to which the SNC method and NC method
differ in efficiency naturally varies by problem. Neverthe-
less, the trends shown in Table 1 are typical. First, the
SNC method in nearly all cases will require fewer func-
tion calls per Pareto point generated. This is because the
iteratively updated approximation of the Pareto frontier pro-
vides the algorithm with a generally more accurate initial
value for each SOO. Second, the number of SOOs required
to produce the same smart Pareto set is nearly always less
for the SNC method than for the NC method, as the NC
method must equally space all of its utopia plane points
based upon the closest two smart Pareto points that it is
designed to be capable of finding. The SNC method, on
the other hand, can adjust to search more closely in regions
of high curvature where smart Pareto points may be found
close together. As the number of objectives or maximum
curvature of the Pareto frontier increase, the advantages of
using the SNC method over the NC method increase as
well.

The SNC method has been introduced in this paper for
implementation in sequence. The SNC method can also
be implemented in parallel by simultaneously performing
SOOs for multiple selected approximation points. However,
this may decrease the ability of the algorithm to identify
the most likely regions where new smart Pareto points will
be discovered, as the Pareto frontier approximation will be
updated less frequently.

6 Conclusion

This paper presented a novel method for directly gener-
ating a smart Pareto set of solutions for an MOP. This
method avoids the inefficiencies of existing approaches
for generating minimal Pareto sets, which generate a sig-
nificant number of solutions that will not be part of
the set being presented to the designer. The development
of a scalar value for smart distance which reflects the
amount of significant tradeoff between points enables this
method. We showed how iteratively updating an approx-
imation of the Pareto frontier allows for searches for
smart Pareto solutions to be made in those regions of
the design space that are calculated to be most likely
to yield them. Because of its ability to more accurately
select initial values for SOOs and dynamically select the
location for normal constraints in each SOO, the SNC
method results in significantly fewer function calls than the
predominant existing method for generating smart Pareto
sets in nearly all cases. The proposed method was tested
on three challenging numerical problems from the lit-
erature and demonstrated its expected effectiveness and
efficiency.

Acknowledgments We would like to recognize the National Science
Foundation (Grant CMMI-0954580) for funding this research.

774 B. J. Hancock, C. A. Mattson

Appendix: Flowchart comparison of NC∗ and SNC
methods

Start

Generate reference points

Determine connectivity of
approximation vertices

Construct approximation planes

Generate evenly spaced approximation
points on approximation planes

Remove restricted approximation points
if applicable

Calculate smart distances
(to select an approximation point)

Construct a normal constraint based on
the selected approximation point

Perform a single-objective
optimization

Add restrictions if applicable

Is the smart Pareto
set complete?

SNC Method

End

Y

N

Start

Generate reference points

Construct utopia plane

Generate evenly spaced utopia plane
points on utopia plane

Remove restricted utopia plane points
if applicable

Construct a normal constraint based on
the selected utopia plane point

Perform a single-objective
optimization

Add restrictions if applicable

Have all utopia plane
points been used?

NC* Method

End

Y

N

Select next utopia
plane point in order

Apply smart Pareto filter

Fig. 9 This chart gives the flow of the NC∗ and SNC methods,
aligning corresponding steps horizontally. As shown here, the primary
differences are (1) the greater number of steps included in the SNC
method within each iteration (as a result of the Pareto frontier approx-
imation being updated), (2) the introduction of two new steps in the
SNC method (identified by stars in this figure), and (3) the application
of the smart Pareto filter at the end of the NC∗ method, as opposed

to the direct generation of a smart Pareto set by the SNC method.
As in Table 1, the asterisk denotes that the NC∗ method has been
implemented with the improvements of Messac and Mattson (2004)
and Haddock et al. (2008) from Section 2.3 and used in conjunction
with a smart Pareto filter, so as to draw attention to the novel aspects
of the SNC method

The smart normal constraint method for directly generating a smart Pareto set 775

References

Aittokoski T, Ayramo S, Miettinen K (2009) Clustering aided appr-
oach for decision making in computationally expensive multiob-
jective optimization. Optim Method Softw 24:157–174

Barber CB, Dobkin DP, Huhdanpaa HT (1996) The quickhull algo-
rithm for convex hulls. ACM Trans Math Softw 22:469–483

Bechikh S, Said LB, Ghedira K (2010) Searching for knee reg-
ions in multi-objective optimization using mobile reference
points. In: Proceedings of the 2010 ACM symposium on applied
computing

Boyce NO, Mattson CA (2008) Reducing computational time of the
normal constraint method by eliminating redundant optimiza-
tion runs. In: 12th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference

Deb K, Tiwari S (2006) Reference point based multi-objective opti-
mization using evolutionary algorithms. Int J Comput Intell Res
2:273–286

Haddock ND, Mattson CA, Knight DC (2008) Exploring direct gen-
eration of smart Pareto sets. In: 12th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference

Handl J, Knowles J (2007) An evolutionary approach to multiobjective
clustering. IEEE Trans Evol Comput 11:56–76

Huang HZ, Gu YK, Du X (2006) An interactive fuzzy multi-objective
optimization method for engineering design. Eng Appl Artif Intell
19:451–460

Ismail-Yahaya A, Messac A (2002) Effective generation of the Pareto
frontier using the normal constraint method. In: 40th Aerospace
Sciences Meeting and Exhibit

Marler RT, Arora JS (2004) Survey of multi-objective optimization
methods for engineering. Struct Multidiscip Optim 26:369–395

Martinez M, Sanchis J, Blasco X (2007) Global and well-distributed
Pareto frontier by modified normalized normal constraint met-
hods for bicriterion problems. Struct Multidiscip Optim 34:
197–209

Martinez M, Garcia-Nieto S, Sanchis J, Blasco X (2009) Genetic
algorithms optimization for normalized normal constraint method
under Pareto construction. Adv Eng Softw 40:260–267

Mattson CA, Mullur AA, Messac A (2004) Smart Pareto filter: Obtain-
ing a minimal representation of multiobjective design space. Eng
Optim 36:721–740

Messac A, Mattson CA (2004) Normal constraint method with guar-
antee of even representation of complete Pareto frontier. AIAA J
42:2101–2111

Messac A, Ismail-Yahaya A, Mattson CA (2003) The normalized nor-
mal constraint method for generating the Pareto frontier. Struct
Multidiscip Optim 25:86–98

Motta RS, Afonso SMB, Lyra PRM (2012) A modified NBI and
NC method for the solution of n-multiobjective optimization
problems. Struct Multidiscip Optim 46:239–259

Pareto V (1964) Cour deconomie politique. Librarie Droz-Geneve (the
first edition in 1896)

Rachmawati L, Srinivasan D (2009) Multiobjective evolutionary algo-
rithm with controllable focus on the knees of the Pareto front.
IEEE Trans Evol Comput 13:810–824

Ray T, Tai K, Seow C (2001) An evolutionary algorithm for multiob-
jective optimization. Eng Optim 33:399–424

Ruzika S, Wiecek MM (2005) Approximation methods in multiobjec-
tive programming. J Optim Theory Appl 126(3):473–501

Rynne B (2007) Linear functional analysis. Springer, New York
Sanchis J, Martinez M, Blasco X, Salcedo JV (2008) A new per-

spective on multiobjective optimization by enhanced normalized
normal constraint method. Struct Multidiscip Optim 36:537–546

Schutze O, Laumanns M (2008) Approximating the knee of an MOP
with stochastic search algorithms. Springer-Verlag, New York

Tanaka M, Watanabe H, Furukawa Y, Tanino T (1995) GA-based deci-
sion support system for multicriteria optimization. In: Proceedings
IEEE international conference systems

Zitzler E, Thiele L (1998) Multiobjective optimization using evolu-
tionary algorithms–a comparitive case study. In: Parallel Problem
Solving From Nature

	The smart normal constraint method for directly generating a smart Pareto set
	Abstract
	Introduction and literature survey
	Evolution of Pareto set generation algorithms
	Survey of minimal representation algorithms

	Technical preliminaries
	The multiobjective optimization problem
	Review of the normal constraint method
	NC method improvements

	Mechanisms for smart Pareto set generation
	The smart Pareto filter
	Direct generation by smart constraints
	Direct generation by smart distance

	The smart normal constraint method
	An analytical description of the SNC method
	A mathematical description of the SNC method
	Approximation point restrictions
	Dominated
	Redundant
	Separated

	Numerical examples
	Conclusion
	Acknowledgments
	Appendix: Flowchart comparison of NC* and SNC methods
	References

