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A major challenge in multidisciplinary system design is predicting the effects of design
decisions at the point these decisions are being made. Because decisions at the beginning
of system design, when the least is known about the new system, have the greatest impact
on its final behavior, designers are increasingly interested in using compositional system
models (system models created from independent models of system components) to vali-
date design decisions early in and throughout system design. Compositional system mod-
els, however, have several failure modes that often result in infeasible or failed model
evaluation. In addition, these models change frequently as designs are refined, changing
the model domain (set of valid inputs and states). To compute valid results, the system
model inputs and states must remain within this domain throughout simulation. This pa-
per develops an algorithm to efficiently quantify the system model domain. To do this, we
(1) present a formulation for system model feasibility and identify types of system model
failures, (2) develop a design space exploration algorithm that quantifies the system
model domain, and (3) illustrate this algorithm using a solar-powered unmanned aerial
vehicle model. This algorithm enables systematic improvements of compositional system
model feasibility. [DOI: 10.1115/1.4005861]

1 Introduction

The motivation for quantifying a system model’s feasible do-
main is rooted in a growing effort to reuse existing models of
component behavior to predict system behavior. Initiatives by
DARPA [1], NASA [2], Lockheed Martin [3], and Boeing [4]
each involve designing and modeling new systems based on reus-
able components and component models (e.g., mechanics, propul-
sion, and electronics). These system models combine both the
capabilities and the limits of the component models. This paper
provides a method to quantify the resulting system model evalua-
tion limits—the feasible domain. The design space exploration
algorithm developed in this paper assists in system model verifica-
tion by quantifying the system model’s feasible domain and iden-
tifying the set of valid model simulation conditions where the
system model can be used [5].

A system model is a model that predicts system behavior by
combining various component models by model composition.
Model composition is the process of combining component mod-
els by evaluating one model, passing its results to a second model,
and then evaluating this second model [6]. Simulation is model
evaluations used to determine the behavior of the system [7]. A
feasible domain is the set of system model inputs and states from
which the model produces valid results (e.g., the feasible domain
of the linear spring model f ¼ k � x is displacements x where the
spring’s response is linear) [8]. A simulation is feasible if it
remains within the feasible domain. Evaluating a system model
outside this feasible domain is an evaluation failure.

System models developed by model composition have several
potential sources of failure, including each component model [9],
each composition [10], data communication between models [11],
and system model convergence [12]. For system models to be use-
ful for verifying design decisions, they must produce results over
the desired model domain and in the presence of design changes.

Model verification in practice today includes manual testing,
automated test, vector execution, random test generation [8], and

metamorphic testing where tests “mutate” to explore new areas of
the system under test [10]. While these methods have proven to be
effective for software and digital logic verification, they do not
take advantage of the nature of system models. We propose that
system model feasibility can be more effectively quantified based
on known system model behavior and failure modes.

Sequential sampling techniques have proven to be efficient
methods for design space exploration. The “efficient global opti-
mization” algorithm built on Gaussian process regression has
demonstrated both high accuracy and efficiency on a variety of
data sets [13]. Kleijnen and Beers illustrate selectivity new sam-
ples based on the previous metamodel prediction [14]. Xiong
et al. expand this work and combined Gaussian and Bayesian
processes to introduce, among other objectives, uncertainty into
the Gaussian process model [15]. Shan and Wang perform sequen-
tial sampling using radial basis functions to quantify the behavior
of unknown functions for high dimensional problems [16].

To quantify system model feasibility, this paper also builds on
several recent publications on design space exploration. Specifi-
cally, Huang and Chan employ Gaussian process regression to iden-
tify the feasible design space of various constrained functional
designs [17]. Devanathan and Ramani, similarly, identify design
space boundaries as a polytope (n-dimensional polygon) [18].
Finally, Malak and Paredis identify valid input domain boundaries
of a fixed set of input data using support vector machines [19]. We
extend these methods in two ways: (1) this paper addresses
dynamic compositional system models in addition to functional
models, and (2) it explores a binary space (system model domain)
and identifies the boundaries of this system model domain.

In summary, this paper develops a design space exploration
algorithm to quantify a system model’s feasible domain, identifies
portions of the system model domain where solutions exist, and
enables failure boundaries to be classified based on failure mode.
This algorithm can be used during system model validation to
quantify and improve the feasibility of system models. Section 2
presents a formulation for system model feasibility and identifies
types of system model evaluation failures. Section 3 develops a
design space exploration algorithm to determine system model
feasible domains and illustrates this using a solar-powered
unmanned aerial vehicle (UAV) system model.
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2 System Model Evaluation Failures

To be useful in design, a system model must compute valid
results. Because the nature and behavior of compositional system
models are not precisely defined, Secs. 2.1 and 2.2 briefly present
a formal definition of system models, component models, and
discipline-specific models that are able to represent most systems
and components found in engineering design. Based on these defi-
nitions and equations, we identify various types of evaluation fail-
ures exhibited by system models in Sec. 2.3.

2.1 System Model Formulation. A system model

y ¼ SðuÞ where u 2 Uf g and y 2 Yf g (1)

is a relation producing the output sequence y from the range Y
based on the input sequence u from the domain U. For example,
the input sequence u for an UAV could be throttle input. The out-
put sequence y could be the resulting propeller thrust.

A system model S (Eq. (1)) predicts the response to stimulus of a
physical system by combining various component models by com-
position [20]. Model composition is a one-way data transfer from
the output of one model to the input of another. Figure 1 illustrates
a system model developed by composition of three component
models, where component models are the boxes C1, C2, and C3.
Composition is data transfer between component models and is
shown as arrows in Fig. 1. The solution to system models can be
found by transferring data and evaluating component models as
established by the system model graph. Loops in the system model,
as illustrated in Fig. 1, may require iterative convergence [21].

2.2 Component Model Formulation. A component model

yj ¼ CjðujÞ where uj 2 Uj; yj 2 Yj

� �
(2)

is a relation that describes the behavior of one portion of a system. It
is able to be combined by composition with other component mod-
els into a system model. The index j in Eq. (2) indicates that it is
one of a set of component models that comprises a system model.

Our focus is on component models that enable discipline-
specific engineering models (e.g., CAD models, dynamics models,
digital logic, computer algorithms, etc.) to be combined into sys-
tem models. We represent these discipline-specific engineering
models as

Dj ¼ ðUj;Xj;Yj; fj; hj; xj;0Þ (3)

where

Uj: set of inputs uj 2 Uj

� �
Xj: set of states xj 2 Xj

� �
Yj: set of outputs yj 2 Yj

� �
fj: progression function fj: Uj�Xj! Xj

hj: output function hj: Uj�Xj! Yj

xj,0: initial state xj; 0 2 Xj

� �

which is a general dynamic system producing outputs yj based on
inputs uj. The parentheses in Eq. (3) denote a tuple, which is an
ordered collection of possibly heterogeneous elements. Equation
(3) maps from the input set Uj, through the set of states Xj, to the
model output set Yj. These mappings are accomplished by both
the progression function fj and the output function hj. The progres-
sion function fj maps from one location to another within the state
space Xj, based on the current input uj and state xj. This is written
as fj: Uj�Xj! Xj (Eq. (3)). The notation Uj�Xj is the Cartesian
product of the sets Uj and Xj, which means the input to fj can be
any combination of uj 2 Uj and xj 2 Xj. The arrow (!) denotes
the function’s mapping of these inputs to its states xj 2 Xj. The
output function hj maps from the current input set Uj and set of
states Xj to the output set Yj (hj: Uj�Xj!Yj in Eq. (3)). xj,0 is the
initial state of xj.

This dynamic system formulation of component models (Eq.
(2)), which we restrict to representing the discipline-specific mod-
els (Eq. (3)), is able to represent most types of models used in en-
gineering system design such as algebraic relationships, data
look-up, stochastic processes, frequency domain models,
differential-algebraic equations, infinite-dimensional dynamic sys-
tems, discrete-event systems, and computer programs [21,22]. For
example, systems of algebraic equations or data look-up can be
represented as the functional mapping from an input space Uj to
an output space Yj with an empty state space using only the output
function: hj: Uj�Xj ! Yj. A system of linear time-invariant dif-
ferential equations _xðtÞ ¼ AxðtÞ þ BuðtÞ and y(t)¼Cx(t)þDu(t)
can be formulated using Eq. (3) with fj as the integration of
Ax(t)þBu(t) and the function hj as Cx(t)þDu(t).

2.3 Evaluation of Failure Sources. Based on the model for-
mulations above, Table 1 first identifies failure modes for compo-
nent models (which include discipline-specific models). System
model failures combine all component model failures as described
by the component model composition and introduce several addi-
tional failure modes. Because the reuse of existing discipline-
specific models includes both the component model definition and
solution, we have not distinguished between model definition fail-
ures and model evaluation failures (e.g., errors introduced by the
solver). The failure type column describes how these failures
behave in relation to model evaluation. Specifically, dynamic fail-
ures are deterministic failures that depend both on model inputs
and model states, static failures(a subset of dynamic) are determin-
istic failures that depend only on model inputs, constant failures are
deterministic failures that do not depend on model inputs or states,
stationary failures are probabilistic failures that are described by a
constant statistic (e.g., data communication between models is
99.999% reliable), and dynamic statistical failures are probabilistic
failures that are described by a changing statistic (e.g., the likeli-
hood of failure is proportional to the model state x).

Fig. 1 Example of a compositional system model

Table 1 Component and system model failures

Component failure Description Failure type

Domain uj 62 Uj (Eq. (2)) Static
State xj 62 Xj (Eq. (3)) Dynamic
Computation fj or hj failure (Eq. (3)) Dynamic
Resource Evaluation resources unavailable Dynamic statistic
Development Improper definition Constant

System failure Description Failure type

Component Any component failure Ref. [6] Component failures
Convergence Fails to converge Ref. [23] Dynamic
Communication Data transfer failure Ref. [24] Stationary
Formulation Unable to define y¼ S(u) Constant
Composition Incorrect composition Ref. [25] Constant
Range y 62 Y (Eq. (1)) Dynamic
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Because this failure classification focuses on the behavior of a
failure during simulation, it differs from other model failure char-
acterizations describing failures in terms of model structure. For
example, a structural singularity describes a system model struc-
tural error resulting in a behavioral formulation failure. An alge-
braic loop in the model structure could result in convergence
failure during evaluation. Stiffness or instability in component or
system models could result in state or range failures during model
evaluation. This focus on the behavior, rather than the structure of
failures, enables us to develop a behavioral model of the feasible
system model domain.

In this paper, we focus specifically on static and dynamic fail-
ures. The constant and stationary failures can be effectively
addressed by techniques available from reliability research [8,26].
Resource failures (dynamic statistic) can be addressed directly by
adding the necessary resources.

Quantifying system model feasibility due to static and dynamic
failures is the process of finding the intersection of the valid compo-
nent model inputs Uj, component model states Xj, valid computa-
tion, model convergence, and valid system model range Y. Model
composition, however, does not typically produce a geometric com-
bination of feasible spaces. Rather, it is a combination defined by
the structure and dynamics of the system model. While this hinders
an analytical computation of the system model feasible space, we
can discover this feasible space computationally.

Some important considerations for investigating dynamic fail-
ures, which include static failures, are: (1) a failure at any point
results in a system model failure, (2) failures are interdependent,
and (3) a failure may be induced by a preceding action from
another part of the system model.

We next develop a domain exploration algorithm to determine
system model feasibility.

3 Feasible Domain Exploration

To validate design decisions using system models, feasible sol-
utions y must exist for the input sequences u that the physical sys-
tem will encounter. In this section, we develop a design space
exploration algorithm to identify the domain where valid system
model solutions exist. This enables us to quantify and improve
system model feasibility due to dynamic system model failures.

System model feasibility exploration is a tool to improve system
model verification before the model is used in system design. The
computational expense of formally quantifying system model feasi-
bility should be offset by more effective utilization of the system
model once the feasible domain is known during the following,
more computationally expensive design, analysis and optimization
processes.

To quantify system model feasibility, Sec. 3.1 presents a formu-
lation for the feasibility of system models, then Sec. 3.3 develops a
design space exploration algorithm. This method is illustrated using
a solar-powered UAV propulsion system described in Sec. 3.2. Sec-
tion 3.4 classifies the valid design space boundaries based on the
failure mode. Section 3.6 identifies methods to improve system
model feasibility.

3.1 Defining a Searchable Space. Because system models
are general dynamic systems, feasible solutions depend on both the
input magnitude and sequence. For example, a sequence that suc-
cessfully lands a UAV would result in mostly disastrous landings if
the sequence was arbitrarily rearranged. Since the system model
input domain U includes all possible values of each element of the
sequence, the full system model domain cannot be effectively
explored. Most systems, however, have a much smaller set of use-
ful input sequences. This section presents a method of establishing
a searchable input domain for feasibility exploration by composi-
tion of the system model with two functions: an input function and
a feasibility function.

The input function is

u� ¼ Ið�Þ � 2 N � <nf g; u� 2 U� � Uf g (4)

where � is an input configuration parameter array and u� is the
system model input sequence. The input function configuration
parameter � provides a continuous space suitable for evaluating
model feasibility even for discontinuous and event-based system
models. For example, a UAV throttle command could be any arbi-
trary sequence of commands, most being inappropriate for UAV
flight. The input function I(�) in this example confines system
model input u to a set of sequences common to UAV flight such
as take-off, climb, cruise, descent, and landing. The input parame-
ter array � configures these sequences.

The feasibility function interprets the system model evaluation
and output sequence as being valid (1) or invalid (0). The feasibil-
ity function

FðSðuÞÞ ¼ 1; 0f g (5)

receives as input the system model and the input sequence it is to
evaluate. It then evaluates the system model and determines if the
model evaluation is valid. It evaluates the system model and pro-
duces a “1” if the system model S was able to compute valid
results and “0” if it was not. This requires both range checking
and process protection in system and component model execution,
which was addressed in our previous work [27].

The composition of the feasibility function (Eq. (5)), system
model (Eq. (1)), and input function (Eq. (4)) produces
F(S(I(�)))¼f1,0g, which enables functional system model evalua-
tion over the continuous space N to be evaluated as either a valid or
invalid simulation. We will refer to the set inputs � where the feasi-
bility function returns 1 as the feasible solution set F�. With this,
we define the system model feasibility ratio as

R ¼

ð
…

ð
FðSðIð�ÞÞÞ d�ð
…

ð
d�

(6)

which is the hyper-volume ratio of the feasible design space to the
total design space.

The challenge our design space exploration algorithm must
solve is to efficiently quantify the size of the feasible solution set
F�, when F� can only be evaluated one configuration � at a time
and when each model evaluation can be computationally expen-
sive. Before addressing this, Sec. 3.2 introduces the UAV system
model that is used to illustrate this algorithm.

3.2 UAV System Model. This section introduces a solar-
powered UAV propulsion system model with which we will illus-
trate feasibility exploration. This model can exhibit all of the
dynamic and static failures in Table 1. The UAV system model is
segmented into four component models shown in Fig. 2: solar
panel, battery, motor, and propeller. The system model has two
inputs (the throttle command and initial battery charge) and pro-
duces a single output (thrust).

The first step to prepare this UAV system model for feasibility
exploration is to ensure component models are only evaluated
within their valid domain uj 2 Uj

� �
and state xj 2 Xj

� �
. If system

model execution exceeds these bounds, execution is terminated.
This is usually a simple comparison of the input and state to their
valid ranges. We next create appropriate input and feasibility
functions.

For valid UAV model execution, the following conditions must
be satisfied:

(1) the solar panel model must be from 6.6 V to 7.4 V (domain
failure)

(2) the battery model must be from �20 A to 1 A (domain
failure)
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(3) the battery model must be from 1.0% to 100.0% of its total
charge (state failure)

(4) the motor torque must be �100 Nm (domain failure)
(5) the motor current must be �20 A (state failure)
(6) the propeller model speed must be from 0 to 95 Hz (domain

failure)
(7) component models must compute solutions (component

failure)
(8) the system model must converge to a solution (convergence

failure)
(9) propeller thrust must be sufficient for take-off (range

failure).

These ranges of valid model execution were readily available
during component model development and should be captured for
each component model as part of system model development.

Accounting for these failures, the feasibility function

FUAVðSðuÞÞ ¼ 1 if

ðtmax

0

dy > T

0 otherwise

8<
: (7)

produces a 1 if the various failure modes are avoided and if the in-
tegral of the thrust is greater than the threshold T within the take-
off duration tmax. The input function

Ið�Þ ¼
�1

Cð�2Þ

� �
(8)

defines the system model inputs: the initial battery charge (�1) and
the throttle command waveform C(�2). The throttle command
C(�2) is a piecewise-linear function that linearly interpolates
between a fixed low and an adjustable high throttle speed.

The system model, feasibility function, and input function
shown here for the solar-powered UAV propulsion system can be
developed for most engineering systems. Although developing
system models is typically challenging, creating input and feasi-
bility functions should not be difficult. These two functions cap-
ture design information that is a standard part of system design
specifications: system inputs and performance ranges. These func-
tions produce a searchable input domain and a binary output range
for evaluating system model feasibility.

3.3 Model Feasibility Design Space Exploration. Using the
compositional system model failure modes identified in Table 1,
this section develops a design space exploration algorithm to effi-
ciently find the set of feasible solutions to the system model and
to quantify system model feasibility (Eq. (6)). The set of model

solutions, referred to as the feasible solution set F�, and its boun-
daries describe where model solutions exist and how to improve
system model feasibility.

Several properties of system model feasibility aid the develop-
ment of a design space exploration algorithm. The first property is
that feasible solutions are part of closed sets but may not be con-
nected sets. This means that the boundary between feasible and
infeasible solutions is within the feasible solution set though, the
set may have holes or may be multiple isolated regions. Second,
the system model solution is either feasible 1 or infeasible 0 with
no gradient. As a result, any slope between feasible and infeasible
regions is a prediction error. Next, because we know that (1)
boundaries are within our feasible solution set, (2) all values
within this set are 1, and (3) all values outside are 0, the feasible
solution set can be described by its boundaries. As such, the
design space exploration algorithm searches for the feasible solu-
tion set boundaries.

To quantify system model feasibility based on these properties,
we propose a design space exploration algorithm that builds upon
other sequential sampling methods [17]. This method, illustrated
in Fig. 3, performs the following steps:

(1) sample the input space U� at random until both feasible and
infeasible samples exist,

(2) estimate the feasible design space by linearly interpolating
available samples,

(3) identify the most gradual transitions between the feasible
and infeasible regions to refine,

(4) identify the least explored areas of design space U� to
refine,

(5) prioritize the next samples by combining transition and
unexplored area metrics,

(6) add new samples at the highest scoring locations,
(7) exit based on number of samples or the stability of the

model feasibility metric,
(8) repeat this sequence from step 2 until the feasibility esti-

mate has stabilized or the maximum number of samples is
reached.

The implementation in this paper addresses deterministic fail-
ures of system models but could be extended to address statistical
failures.

The first step is to sample the input space at random until both
valid and invalid samples exist. Latin hypercube sampling is used,
because it ensures that samples are spread over the input space by
selecting new sample locations at random from distinct segments
of the input space [28]. This is typically just a few samples to seed
the Gaussian process regression design space estimation.

With a sample population containing both valid and invalid
results, the second step is to estimate the valid design space. Gaus-
sian process regression (kriging) provides an accepted and flexible
method of estimating the design space. It only requires an arbi-
trary set of sample locations � and system responses f(�i) as input
with which it predicts both the system response ~f ð�Þ and estimates
the prediction error u(�) [29]. The predicted system response

~f ð�Þ ¼
Xn

i¼1

kið�Þf ð�iÞ þ Zð�Þ (9)

estimates system model validity ~f ð�Þ for unexplored model inputs
� [29]. The weighting functions ki(�) and zero-mean stochastic
process Z(�) are determined as part of Gaussian process regres-
sion. Prediction error

uð�Þ ¼ E½ð~f ð�Þ � f ð�ÞÞ2� (10)

is defined as the expected value (E) of squared error between the
predicted value ~f and actual value f at location �. It is also esti-
mated as part of Gaussian process regression using the set of sys-
tem responses f(�i) as described and implemented by Lophaven
et al. [30].

Fig. 2 Solar-powered UAV propulsion system model
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Using the predicted response and error, we next sample ~f ð�Þ
and u(�) at regular intervals from the maximum to the minimum
value of each input dimension of � to produce the n-dimensional
prediction matrix ~F

~F ¼ ~f ð�nÞ (11)

and the error matrix

U ¼ uð�nÞ (12)

Filtering the prediction matrix ~F produces the binary feasibility
space estimate

~Fb ¼ 1 if ~F >¼ 0:5
0 otherwise

�
(13)

with 0.5 as the threshold between valid and invalid samples. The
number of dimensions of each of these matrices is the number of

configuration parameters in �. The number of elements in each
dimension establishes the prediction and error resolution.

The prediction matrix ~F is used in step 3 to identify transitions
between valid and invalid regions. The estimated error U is used
by step 4 to identify unexplored areas in the design space.

The average value of ~Fb estimates system model feasibility
ratio

R �
P

~FbQ
j

(14)

defined in Eq. (6). The number of elements in each dimension of
~F is j.

The third step is to identify the most gradual transitions
between the valid and invalid regions. Although the true boundary
of the valid region changes immediately from 1 to 0, the feasibil-
ity space prediction ~F interpolates between sampled locations.
Consequently, a slowly changing transition in ~F means the valid
region boundary is not well defined. To identify gradual transi-
tions, we will first identify the transition regions and then attenu-
ate the quickly changing transitions.

Gradient-based edge detection, which is used in image process-
ing, would be ineffective at finding gradual transitions in ~F
because both valid and invalid regions contain gradually changing
values. Because we are looking for transitions in a binary space,
we can simply look for transitions through the 0.5 threshold. To
do this, we multiply each element of the predicted response by the
Gaussian weighting function

GðV;l;rÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p � e�

ðx�lÞ2
2r2 (15)

which amplifies the feasible solution set boundary.
Although the Gaussian weighting function identifies transitions,

it weights them equally. To identify slowly changing boundaries,
an averaging convolution kernel (shown as a two-dimension
m� n convolution kernel in Eq. (16)) is convolved (written as *)
with the results of the Gaussian weighting function [31]. This
results in a spatial average over adjacent model predictions. For
slowly changing transitions, adjacent values of ~F will receive a
similar value from the Gaussian weighting function. The averag-
ing convolution will, consequently, have little effect on slow tran-
sitions but will attenuate sharp transitions more strongly.

A ¼ 1

mn
�

1 … 1

..

. . .
. ..

.

1 … 1

0
@

1
A (16)

Combining these operations produces the n-dimensional model
transition matrix

T ¼ A 	 Gð ~F;l; rÞ (17)

whose maximum values are the slowest model transitions.
The fourth step is to identify the least explored areas of the

input space U�. The feasibility space error (Eq. (12)) provides an
estimate of error that increases as the distance from samples
increases. This can be used directly to identify the least explored
areas of the design space.

The fifth step determines the next sample(s) by combining tran-
sition and unexplored area matrices. The resample priority matrix

Pi ¼ UiT
k
i 8 i 2 �m (18)

is created by the element-by-element multiplication of the feasi-
bility error matrix U and the transition matrix T raised to the
power of k. Because the error is 0 at existing sample locations,
multiplying by U ensures that new samples are not from

Fig. 3 Design space exploration algorithm overview
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previously sampled locations. To prioritize refining boundaries
over exploring unexplored regions, k can be set to a value greater
than 1. The sixth step adds new samples at the location of the
maximum values of P.

The seventh step tests the exit criteria. Feasibility exploration
can either exit based on the number of samples or the standard
deviation of the feasibility prediction over some number of previ-
ous samples. If the standard deviation is less than a threshold

rðRn�j;…;RnÞ < rt (19)

feasibility exploration can terminate. A larger threshold results in
a faster search but less accurate boundaries. A rt of 0.01 would
exit after the 37th sample in Fig. 5.

The eighth step continues feasibility exploration if the exit cri-
teria are not satisfied.

Figure 4 shows the result of the first 40 samples of the feasibil-
ity exploration using the UAV model. The configuration parame-
ters � are the throttle command (vertical axis) and the initial
battery charge (horizontal axis). Figure 4(a) shows the prediction
matrix ~F. The light region in the center of this plot is the feasible
solution set F�. The circles are the samples taken to identify the
feasible solution set. These circles are shaded according to the
failure type. Dark circles (all within the feasible region) indicate a
successful simulation.

The UAV model’s feasible region, shown in Fig. 4(a), is due to
interactions within the model and cannot be fully captured by a
fixed range of throttle command and initial charge. Although the
feasibility search algorithm is able to find multiple disconnected

regions, the UAV model valid region is a simply connected set,
which is typical of the feasible regions we evaluated.

Figure 4(b) shows the resample priority matrix P (Eq. (18)).
The larger black circle (“throttle Cmd” � 5700 and “charge” �
0.9) has the greatest resample priority and is therefore the location
of the next sample. We set k¼ 2 in Eq. (16) in order to preferen-
tially refine known boundaries over exploring new areas for this
example.

Feasibility exploration estimates system model feasibility using
Eq. (14). The solid trace in Fig. 5 shows the change in the feasibil-
ity estimate versus the number of samples. Both the feasibility
estimate and the feasible solution set boundary stabilize in about
40 samples.

3.4 Method Evaluation. The input function (Eq. (4)) and
feasibility function (Eq. (5)) enable various design space explora-
tion algorithms to evaluate the feasibility of dynamic composi-
tional system models. In this section, we compare the evaluation
of three different design space exploration algorithms by compar-
ing their computed feasibility (Eq. (14)). Our objective is to show
that this proposed method converges to the same feasibility value
at an acceptable rate.

To do this, we compare the proposed method to Latin hyper-
cube random sampling and mean-squared error sampling. Both of
these sampling methods perform unbiased global searches. The
feasible space of each of these sampling strategies is interpolated
using Gaussian process regression. Latin hypercube random sam-
pling produces random samples that are guaranteed to cover all
portions of a space. Therefore, it is preferred over pure random
sampling for design exploration. Mean-squared error sampling
chooses the next sample at the location farthest from existing
samples.

Figure 5 plots the convergence of the feasibility metric of these
three sampling methods over the number of samples using the
solar-powered UAV system model. Each method converges to a
similar feasibility value. The method developed in this paper con-
verges to within 1% of the final solution within 40 samples.
Mean-squared error achieves a similar accuracy in 80 samples.
Latin hypercube sampling converges to this same feasibility value
after 178 samples. The faster rate of convergence of this feasibil-
ity search illustrates the value of searching based on our a priori
model of the feasible system model domain.

3.5 Feasible Solution Set Boundary Classification. In addi-
tion to quantifying feasibility and identifying the feasible solution

Fig. 5 Comparison of random, mean-squared error, and pro-
posed feasibility design space exploration

Fig. 4 Feasibility exploration of a UAV system model
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set, the feasible solution set boundaries can be classified based on
the nearest failure. For example, in Fig. 4(a), the bottom boundary
is due to the thrust range failure, the top boundary is the propeller
valid speed domain failure, the left boundary is the battery current
domain failure, and the right boundary is the solar panel voltage
domain failure defined in Sec. 3.2. While this boundary classifica-
tion can be accomplished visually for feasibility spaces with three
or fewer dimensions, our future work addresses automatic bound-
ary identification.

Categorizing the feasible solution set boundary in this way ena-
bles failures that define the system model feasible solution set to
be identified. This also allows system model feasibility improve-
ments to be prioritized. For example, if the valid range of propel-
ler speeds were increased, the top boundary of the feasible
solution set in Fig. 4(a) would rise, the size of the feasible solution
set would increase, and system model feasibility would increase.

3.6 Increasing Feasibility Using System Model Feasibility
Exploration. Feasibility exploration facilitates integrating com-
positional system models into system design. To use feasibility
exploration in system design:

(1) system models are developed to only produce results within
the valid model ranges Uj, Xj, etc.,

(2) input and feasibility functions are defined to produce a con-
tinuous, searchable input space and binary response for the
system model: F(S(I(�)),

(3) algorithm parameters k (exploration priority), rt (termina-
tion threshold), and maximum samples are set, and

(4) feasibility exploration is performed and recorded periodi-
cally during system design.

Using feasibility exploration, system model developers can
qualify system model execution, identify valid input ranges, deter-
mine primary failure modes, identify model changes that reduce
feasibility, and progressively improve system model feasibility.

The feasibility estimate alone can serve as a threshold to qualify
and compare system models. If feasibility is too small, it is
unlikely that a system model will effectively predict system
behavior, especially in the presence of design changes. In addi-
tion, comparing the feasibility of different versions of a system
model can identify the impact of specific model changes on sys-
tem model feasibility.

The feasible solution set provides a more complex view into
system model feasibility, as is seen in Fig. 4(a). Specific simula-
tion conditions can be compared to the feasible solution set to
determine whether the needed simulation conditions will evaluate
correctly. Identifying the failure type along the feasible solution
set boundaries indicates the source of system model failures. The
larger the boundary of a specific failure mode, the more significant
the failure mode. These measurements enable model improve-
ments to be prioritized in order to increase the feasible solution
set and determine needed simulation conditions. For example, a
faster UAV take-off requires a greater throttle command and
larger initial charge. This is limited by system model failures due
to the propeller model’s valid speed range. By increasing this
range, system model feasibility would grow and new simulation
conditions would become feasible.

4 Summary and Future Work

For system models to be useful in system design, they must pro-
duce feasible results over the desired model domain and through-
out the entire design process. This is especially important for
compositional system models due to their additional sources of
failure. Of the many types of system model failures, dynamic and
static failures, which are not well addressed by reliability
research, have been the focus of this paper.

In this paper, we presented a formulation for system model feasi-
bility and developed a design space exploration algorithm to iden-
tify the feasible system model domain. This enables developers to

(1) determine whether solutions to specific simulation conditions
exist, (2) identify if changes in a system model affect feasibility,
(3) identify significant sources of system model failures, and (4)
select system model improvements that will lead to feasibility
improvements.

Our future work into system model feasibility includes extend-
ing feasibility exploration to statistical failures, quantifying the
relationship between computational cost and the feasibility space
dimension, classifying failure importance based on boundary size,
and quantifying feasibility sensitivity to design changes.

Our initial studies into evaluating and improving the high-
dimensional performance of the proposed design space explora-
tion found that the growth in number of samples appears to be less
than exponential with respect to the number of dimensions. Other
computational enhancements, however, would benefit high dimen-
sional design space exploration. For example, the literature rec-
ommends radial basis functions over Gaussian process regression
for high dimensions [16]. In addition, Eq. (18) should be repre-
sented by a sparse, rather than a full matrix, to reduce the growth
in data size. Although good high dimensional performance is im-
portant, the number of dimensions of feasibility design space ex-
ploration is the number of the input function parameters (�), not
size of the system model domain or number of model failures.
Therefore, the search dimensions are likely to grow much more
slowly than the complexity of system models.

Nomenclature

y¼ S(u) ¼ system model
Cj ¼ jth component model within a system model
Dj ¼ jth discipline-specific model

F(S(u)) ¼ feasibility function
� ¼ input configuration parameters

I(�) ¼ input function
F� ¼ feasible solution set
R ¼ system model feasibility ratio

~Fð�Þ ¼ feasibility prediction matrix
U(�) ¼ feasibility error matrix

P ¼ resample priority matrix
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