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Abstract The use of multiobjective optimization in iden-
tifying systems that account for changes in needs (pref-
erences), operating environments, concepts, and analysis
models over time is generally not explored. In terms of
identifying sets of non-dominated designs, these changes
result in the concept of dynamic Pareto frontiers, or dynamic
s-Pareto frontiers in cases where sets of system concepts
are being evaluated simultaneously over time. In a previous
work by the authors, a 6-step optimization-based method
was presented to identify systems that account for predicted
changes in preferences by moving from one s-Pareto design
to another through module addition. Addressing some of
the limitations of this method, this paper presents an
improved 5-step optimization-based method that builds on
recent developments in multiobjective problem formula-
tions of dynamic s-Pareto frontiers. In addition, recog-
nizing the inherent uncertainty associated with predicting
future needs or preferences and dynamic s-Pareto frontiers,
the incorporation of uncertainty analysis in this improved
method is also presented as an additional method improve-
ment. Application of the presented method is illustrated
through a modular plywood cart system for developing
countries.
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Nomenclature

J Aggregate objective function.
μ Vector of design objectives.
x Vector of design objects.
y Vector of independent design objects.
z Vector of dependent design objects.

Subscripts, superscripts, and other indicators

[ ](i) indicates current module.
[ ](k) indicates current design concept.
n[ ] indicates the number of [ ].
[ ]l/u indicates the lower/upper limit of [ ].
ˆ[ ] indicates the modular-system [ ].

[ ]∗ indicates the optimal value of [ ].

1 Introduction & background

Engineering design is a multifaceted decision making pro-
cess that often involves several conflicting design objectives
(Das 1999; Kasprzak and Lewis 2000; Frischknecht et al.
2011). The use of multiobjective optimization in resolving
conflicts due to changes in needs (preferences), operating
environments, concepts, and analysis models over time is
generally not explored. When identifying sets of non-domi-
nated designs, these changes result in the concept of dynamic
Pareto frontiers, or dynamic s-Pareto frontiers in cases where
sets of system concepts (Mattson and Messac 2003) are being
evaluated simultaneously over time (Lewis et al. 2012).

The concept of changing design selection due to changes
in preference, analysis models, concepts, or environment
is illustrated is Fig. 1 where the points μ(1), μ(2), and
μ(3) represent the designs selected along the dynamic
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Fig. 1 Design selections due to both changing preference and
dynamic s-Pareto frontiers

Pareto/s-Pareto frontier (bold lines) at times 1, 2, and 3
respectively. As identified in Lewis et al. (2012), some
examples of situations where these changes could be pre-
dicted include changes in manufacturing cost models due to
economies of scale, planned implementation of new tech-
nologies, ranges of known operating environments, and gov-
ernmental performance regulation changes (i.e., gas mileage
or emission requirements of vehicles).

The decision of whether to account for these changes
through the development of multiple systems, or adaptive/
reconfigurable/modular systems is a complex decision. In a
previous work by the authors, a six-step optimization-based
method was presented to identify a catalog/series of system
designs that account for predicted changes in preferences by
moving from one s-Pareto design to another through module
addition (Lewis and Mattson 2012). Addressing some of the
limitations of this method, this work presents an improved
5-step optimization-based method that builds on recent
developments in multiobjective problem formulations of
dynamic s-Pareto frontiers (Lewis et al. 2012).

To lay the foundation for this improved method, a sum-
mary of the original six-step method is provided in Sec-
tion 2, followed by the presentation of the improved method
in Section 3. Identification of a modular cart system for
developing countries is then provided in Section 4 to illus-
trate the implementation of the improved method, with
conclusions provided in Section 5.

2 Summary of the original six-step optimization-based
method

A Pareto/s-Pareto frontier, by nature, represents all optimal
system candidates (Messac and Mattson 2004; Todoroki and
Sekishiro 2008; Gurnani and Lewis 2008). As such, one of
the fundamental tenets of this method is that the current and
future needs of a system can be represented by individual
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Fig. 2 Flow chart describing the six-step optimization-based
modular-system design method presented in Lewis and Mattson
(2012)

designs along the s-Pareto frontier. Building on this assump-
tion, the novel outcome of this method (see Fig. 2) is that
it identifies designs along the s-Pareto frontier that facili-
tate the creation of modules that jump from one location
on the frontier to another. These non-dominated designs are
selected based on models of present and future needs, and
are used to provide target performance values in the design
of platforms and modules. This concept is graphically repre-
sented for a s-Pareto design situation in Fig. 3. The designs
represented by μ(1)–μ(4) represent the designs satisfying the
present/future needs that define the boundaries of a set of
anticipated regions of interest. The identified platform and
modules are subsequently designed to achieve the desired
system performances identified by the designs μ(1)–μ(4).

2.1 Summary of steps

This method of using models of present and future needs to
guide the design of a modular-system using target s-Pareto
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Fig. 3 Graphical representation of the intent/result of the method
presented in Fig. 2. Notice that the identified modular-system can
adapt to designs that are within designer defined regions of interest
representing the current and future system needs

designs is an iterative six-step process. Each of these steps,
as presented in Lewis and Mattson (2012), is summarized
below.

Step A: Explore the multiobjective design space of each
system concept to identify the Pareto frontier for
each of the selected system concepts.

Step B: Identify Anticipated Regions of Interest within
the multiobjective design space that capture the
predicted changes in customer needs over time.

Step C: Identify platform design variables (xp) that min-
imize the losses in objective space performance
due to the added constraint of commonality within
the anticipated regions of interest.

Step D: Identify the s-Pareto frontier within each region of
interest.

Step E: Identify a single s-Pareto-optimal design within
each region of interest that facilitates the desired
adaptation to designs selected in the other regions
of interest. The multiobjective problem formula-
tions capable of identifying the optimal design in
each region of interest for Pareto and s-Pareto set-
tings are not repeated here, but are provided in
Lewis and Mattson (2012).

Step F: Identify module designs that provide a con-
strained change in system performance by:
(i) Selecting a modular architecture type, (ii) Iden-
tifying the product platform design and module
interfaces, (iii) Determining the desired number of
modules and modular progression, and (iv) Identi-
fying and calculating the values of module design
variables through a constrained module optimiza-
tion formulation. Once again, the formulations

required to complete this step are not repeated
here. The developed formulation for constrained-
module optimization are also presented in Lewis
and Mattson (2012).

It should be noted that the development of this method
was divided into two phases. The first phase focused
on the development of systems capable of traversing a
single Pareto frontier, while the second phase extended
the method to s-Pareto design situations. For complete
presentations of these phases of method developments,
see Lewis et al. (2011) and Lewis and Mattson (2012)
respectively.

2.2 Original method limitations

The purpose of this section is to describe the limitations
of the six-step method that provide the motivation for the
method presented in Section 3. Specifically, the notable
limitations of this method include the following:

(i) The method is only capable of accounting for changes
in preferences and environment. The multiobjective
problem formulation implemented in Step E of the
method cannot identify a dynamic s-Pareto frontier if
different sets of concepts or analysis models need to
be considered within each region of interest (i.e., con-
sidered concepts and analysis models cannot change
over time).

(ii) The method assumes that a common set of design
variables can be identified as platform variables
(excludes the possibility of considering totally dif-
ferent concepts). This requirement of only con-
sidering concepts that collectively contain a set
of common variables predefines the optimization
results, and does not allow for concepts with poten-
tial improvements in objective space performance
to influence the modular-system concepts that are
developed.

(iii) The optimization of each module is performed sepa-
rate from the other elements of the modular-system,
and assumes that the platform and specified module
combinations achieve the desired performance. Con-
sequently, the constrained module optimization for-
mulation in Step F does not account for the possibility
that the performance of system iterations achieved
through the addition of specific modules do not match
the target performances identified in Step E of the
method.

(iv) Due to the use of predicted changes in preferences and
environments, along with the desire to allow changes
in analysis models and concepts, uncertainty is an
inherent issue that is not incorporated or discussed in
the current optimization formulations.
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In considering the anticipated sources of uncer-
tainty, three general groups that emerge are parame-
ter/variable uncertainty, analysis model output uncertainty,
and current/future preference uncertainty. In the litera-
ture are found two broad categories of approaches to
determining the level of uncertainty in decision making. The
first are reliability-based design methods (Frangopol and
Corotis 1996; Thanedar and Kodiyalam 1991; Melchers
1999) which focus on assessing the probability of design
failure, and seek to reduce such probabilities by shifting
the mean performance away from constraint limits
(Melchers 1999). The second are robust design based meth-
ods (Parkinson et al. 1995; Chen et al. 1999; Chen et al.
2000; Su and Renaud 1997; Taguchi 1993; Messac and
Ismail-Yahaya 2002; Chen and Wassenaar 2001) which
focus on optimizing the mean performance, and minimiz-
ing performance variation, while maintaining feasibility
with probabilistic constraints (Taguchi 1993; DeVor et al.
1992; Koch 2002). Note that these two approaches have
generally focused on parameter/variable and model output
uncertainty. As such, the incorporation of uncertainty miti-
gation into the method presented in Section 3 will focus on
accounting for current/future preference uncertainty.

Some of the common methods of performing uncertainty
analysis include: (i) Monte Carlo and Sampling techniques
(Halton 1960; Hammersley 1960; Owen 1998; Hutcheson
and McAdams 2010), (ii) Univariate Dimension Reduction
(Xiong et al. 2011; Li and Zhang 2011), (iii) Deterministic
Error by Model Composition (Larson et al. 2010), (iv) Error
Budgets (Evans et al. 2009; Hamaker 1995), (v) Interval
Analysis Methods (Hayes 2003), (vi) Bayesian Inference
(Box and Tiao 1992), (vii) Anti-Optimization Techniques
(Lombardi and Haftka 1998; Gurav et al. 2005), and (viii)
Taylor Series and Central Moments (Koch 2002; Glancy
1999; Vardeman 1994; Jackson 1982). Note that the anal-
ysis of multiple predicted design scenarios inherent in the
presented method will often decrease the likelihood of being
able to obtain statistical data of the parameters/variables
and analysis model outputs for each concept/scenario. As
such, to enable the use of either statistical or bounded
uncertainty parameter domains, and ensure that designs
are selected such that the wost case scenarios will satisfy
all design constraints, the optimization formulations within
the improved method will incorporate Anti-Optimization
techniques.

3 Introduction of a new 5-step modular-system
optimization-based method using dynamic
s-Pareto frontiers

This section presents an optimization-based method that
builds on recent developments in multiobjective problem

formulations of dynamic s-Pareto frontiers, and addresses
the identified limitations of the method summarized in the
previous section. Figure 4 illustrates the intent of the method
to select an s-Pareto optimal platform design that, through
the addition of modules, becomes other designs within
anticipated regions of interest along the dynamic s-Pareto
frontier. For example, the figure shows that the platform
design, labeled μ(1), adapts to become μ(2) through the
addition of Module 1. In like manner, the subsequent design
identified as μ(3) is also achieved through the addition of
Module 2.

Figure 5 provides a flow chart that represents the five
primary steps of the multiobjective optimization design
method developed herein. Each of these steps is described
below. It is important to note that the titles of some of
the steps are similar to the steps/sub-steps of the original
method presented in Fig. 2. However, each of these steps
requires new and essential extensions to enable the method
to identify systems capable of traversing a dynamic s-Pareto
frontier.

3.1 Characterize the dynamic multiobjective design space

The first step of the method is to explore the dynamic
multiobjective design space to obtain information that will
help to guide and inform the development of modular
system concepts in the fourth step of the method (see
Section 3.4). As seen in Fig. 4, this requires the charac-
terization of the dynamic s-Pareto frontier for the set of
non-modular system concepts that account for the identified
changes in preferences, concepts, models, and environ-
ments over time. As such, the expanded function of this
step of the method requires the evaluation of a Dynamic
s-Pareto Optimization Formulation as presented in Lewis
et al. (2012), where a noted capability of this formulation
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Fig. 4 Graphical representation of the intent of the improved method
to provide a system that expands from one dynamic s-Pareto design
to another through the addition of modules. Also notice that the
designs that it can adapt to are within designer defined regions of
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is that it does not require the identification of common
design elements (i.e., considered concepts can be totally dif-
ferent). It should be noted that this dynamic formulation
enables design variables, models, concepts, and constraints
to change seamlessly. As a result, as MOP formulations
change, what was a design parameter in one formulation
could be an inequality constraint in the next formulation.
Thus, to avoid confusion, any variable, parameter, con-
straint, or objective associated with a design is termed a
design object.

As described in the previous section, there also exists
the need to incorporate uncertainty analysis into the method
presented in this section. With this understanding, a generic
dynamic multiobjective optimization problem capable of
identifying the s-Pareto frontier for each time step (Lewis
et al. 2012), and incorporating anti-optimization is pre-
sented as Problem 1 (P1):
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where c(k(t)) which reside in the domain defined by (9).
Note that for discrete representations of the s-Pareto fron-
tier at each time step, the corresponding x∗(k(t)) vector and
corresponding k(t) for each discrete point are collected in
the sets Dx and Dk. The mathematical definitions of these

sets are: Dx :=
{(

x
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1 , ..., x

∗(t)

n
(t)
p

)
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}
, where n

(t)
p is

the number of discrete s-Pareto points identified for the t-th
time-step.
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3.2 Define anticipated regions of interest for each time-step

As with the method presented in Section 2 (Lewis and
Mattson 2012), a key idea of the method presented in this
section is that changes in the desired system performance
are equivalent to changes in the desired values of one or
more design objectives. To that end, the second step of the
method captures the predicted changes in system needs over
time, and represents them as Anticipated Regions of Interest
of the dynamic multiobjective design space. It is important
to note that these regions represent predicted future needs
regarding objective performance. To maintain simplicity
in the graphical presentation of Fig. 4, regions of interest
involving only one objective (μ1) are shown. However, it is
expected that regions of interested would be specified for as
many of the objectives as desired.

As described in Section 2.1, the identification/use of cur-
rent and predicted future preferences naturally introduces
uncertainty in the bounds of the regions of interest identi-
fied in this step of the method. Whether statistical data or
simple uncertainty bounds are known, it is suggested that
at this stage in the method the bounds of the regions of
interest be set to provide the largest possible regions. As a
result, the upper bounds of each region of interest will be
increased and the lower bounds decreased. The mitigation
of the uncertainty in the bounds of the regions of interest
will be addressed in the final step of the method where the
designs of the modular product iterations are selected.

Although not represented in Fig. 5, it should be observed
that in some situations this step of the method may occur
before the method begins. One situation where this could
occur is when available products on the market have prede-
fined the acceptable ranges of system performance that is
desired. In these situations the anticipated regions of inter-
est should be incorporated into the upper and lower design

object limits (x(k(t))
u and x

(k(t))
l respectively) implemented in

the dynamic s-Pareto frontier formulation presented in P1.
In situations where this step occurs after the evaluation of
P1, all identified dynamic s-Pareto designs outside of the
anticipated regions of interest and that do not satisfy (3) are
filtered out of Dx and Dk.

3.3 Determine the desired number of modules and modular
progression

The purpose of this step is to leverage the knowledge gained
through the characterization of the dynamic multiobjective
design space in Step A in determining the number of mod-
ules to be developed, and the desired modular progression of
the system. In order to determine this progression requires
that a modular architecture type (Strong et al. 2003; Ulrich
and Eppinger 2004) enabling the desired functionality of the
platform and modules as a whole and platform design target

region of interest be identified. In general, it is assumed that
the platform target region corresponds to t = 1. However,
the constrained module optimization formulation presented
and evaluated in Step E is written to enable any region of
interest to be selected as the platform target region.

The target result of this step of the method is the cor-
responding module progression matrix (δ) defining the
intended module progression sequences. The definition and
expected form of δ is provided below.

δ =

⎡
⎢⎢⎢⎣

α0 β0

α1 β1
...

...

αnm βnm

⎤
⎥⎥⎥⎦ (11)

where the platform target region is identified by the values
of α0 and β0 satisfying the condition β0 = α0; and the val-
ues of αi and βi (i > 0) respectively refer to the starting and
the ending regions of interest that the i-th module is bridg-
ing (i.e., a module connecting regions of interest at times
one and two in Fig. 4 would correspond to a row entry of
[1 2] in δ). It is noted that for the constrained module opti-
mization formulation presented and evaluated in Step E, it is
assumed that the values of βi corresponding to each region
of interest only appear once in the second column of δ.

3.4 Develop concepts & analysis models for the desired
platform and modules

In the fourth step of the method, concepts and analysis mod-
els are developed for the platform and module designs that
incorporate the selected modular architecture and facilitate
the desired modular progression. An important aspect of
these analysis models that is essential to the final step of
the method is the characterization of the change in the over-
all system objective space performance obtained through
the addition of each module. Another important goal of this
step is to identify the set of modular-system design objects
(x̂) that define the platform (x̂(0)) and i-th module (x̂(i))
designs.

3.5 Calculate the optimal values of the modular-system
design objects

The fifth step of the method implements an optimization
routine to identify the values of the independent modular-
system design objects (ŷ). The goal of this optimization for
the system performance of the combined platform and mod-
ules is two-fold. The first is to minimize the distance/offset
from the dynamic s-Pareto designs within each region of
interest identified in the sets Dx and Dk (�̂). The sec-
ond is to minimize functions that calculate a penalty value
for iterations of the product that are within areas of the
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regions of interest where preference uncertainties exist (�̂).
Building on the dynamic formulation presented in Step A,
the generic multiobjective optimization formulation iden-
tifying the optimal values of the modular-system design

objects
(
Dm :=

{(
x̂

∗(i)
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ŷ
+ n

(i)

ẑ
(20)

μ∗(β)
v =

{
w

(
k
(β)
v

)
· x∗(β)

v

}
→ μ̂(i) (21)

α = δi,1 (22)

β = δi,2 (23)

where the values of ĝ
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subject to:

ĥ(i)
v (ĉ(i)) ≤ 0

{
v = 1, ..., n

(i)

ĥ

}
(25)

where:

ĝ
(i)
j =

⎧⎨
⎩

ẑ
(i)
j

(
ŷ(i), ĉ(i)

) − ẑ
(i)
u,j , j ≤ n

(i)

ẑ

ẑ
(i)

l,j−n
(i)

ẑ

− ẑ
(i)

j−n
(i)

ẑ

(
ŷ(i), ĉ(i)

)
, else

(26)

where ĉ(i) is a vector of the i-th modular system iteration
uncertain parameters which reside in the domain defined by
(25); Dm is the set of modular-system design object values

(x̂∗) for the platform (i = 0) and module (i > 0) designs;
the vector μ̂(i) represents the objective space performance
of the i-th system iteration; ŷ(i) represents the values of
independent design objects that characterize μ̂(i); μ̂

(i)
l/u are

the upper/lower bounds that characterize μ̂(i); μ̂
(i)
l/u,unc are

the upper/lower bounds within the regions of interest where
the desirability of designs outside of these bounds is uncer-
tain; x̂ is a vector composed of independent

(
ŷ(i)

)
and

dependent
(
ẑ(i)

)
design objects for the i-th system iteration;

ŵ(i) is a diagonal matrix for the i-th system iteration sat-
isfying the condition ŵ

(i)
q,q = {−1, 0, 1}; the vector μ∗(β)

characterizes the objective space performance of the tar-
get designs within the region of interest for time-step β

mapped to (→) μ̂(i); w

(
k
(β)
v

)
is the diagonal matrix for con-

cept k identified in (5) of P1 for the v-th s-Pareto design
of time-step β; and x

∗(β)
v is the design object vector for the

v-th s-Pareto design of time-step β contained in Dx. Note
that the i-th module transitions the system from the system
iteration in time-step α to time-step β.

It should be observed that (12) will result in the identi-
fication of many modular-system candidates with varying
values of �̂, �̂, and the corresponding μ̂. Since the desired
result of this final step of the method is typically a sin-
gle modular-system, (12) will generally be replaced with an
aggregate objective function similar in form to:

min
ŷ

J (�̂, �̂, μ̂) (27)

It should also be observed that (P2) does not provide a
suggested form of the penalty function (�̂) used in (12).
The form of the penalty function is not provided so as to
allow a suitable penalty to be determined by the designer.
An example form of �̂ is provided in the following sec-
tion through the presented example implementation of the
method described in this section.

4 Modular plywood cart system for developing countries

This section implements the method presented in Section 3
in the identification of a modular plywood cart system for
developing countries. Background for the motivation and
selection of this example is provided below, followed by the
method implementation.

4.1 Motivation & background

Over the past thirty years, more than 17 million individuals
have escaped extreme poverty through the use of income-
generating products – products that have the potential to
increase an individuals earning power (Fisher 2006; Polak
2005). Despite these measurable impacts, the distribution
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of many income-generating products is limited due to the
large initial investments that are required (∼2-3 months
income), and the financial risks involved if the product
fails to produce additional income (Fisher 2006; Johnson
et al. 2006; World Resources Institute and International
Finance Corporation 2007). One method to overcome these
financial risks, and increase the use and distribution of
these products, is through the creation of low cost mod-
ular products. One notable advantage of this approach is
that the income generated by using the initial product iter-
ation (platform iteration) serves to finance future upgrades
that are made affordable through use of the product/
system.

In considering that 75 % of those individuals who are in
extreme poverty are rural farmers (The Mulago Foundation
2012), the ability to transport goods more efficiently would
represent a potential means of increasing their income. In
addition to these individuals, others could also benefit from
the ability to obtain an inexpensive means of transporting
goods and other cargo. With this motivation, the example
presented in this section focuses on the identification of a
modular plywood cart that is capable of adapting to vari-
ous cargo types so as to meet a variety of user needs, while
maintaining the lowest possible material costs.

Noting that increases in income will result in changes
in what individuals view as affordable, preferences dictat-
ing the acceptable sales prices of carts for various cargo
types/capacity will also change over time. In addition, the
other sources of change for this example include the cart
structure analysis models and concepts due to various load
scenarios (i.e., operation environments). These load scenar-
ios come from the identification of three different types
of cargo. A description of these cargo types are provided
below.

(1) Stackable Cargo: This cargo is characterized by
objects that can be stacked or placed next to each
other, and only require a tie-down (i.e., rope or other
lashing) to secure the cargo onto the cart. Examples
of this cargo type include bricks, buckets, barrels,
boxes, etc.

(2) Low Density Non-Stackable Cargo: This cargo is char-
acterized by objects that are low in density, and can
only be stacked if there is a structural aspect of the cart
to contain the cargo within the boundaries of the cart
bed (sides). Examples of this cargo type include foam,
straw, clothing, etc.

(3) High Density Non-Stackable Cargo: This cargo is
characterized by objects that are high in density, and
again require a structural aspect of the cart to con-
tain the cargo within the boundaries of the cart bed.
Examples of this cargo type include soil, gravel, fresh
produce, etc.

Cargo Type #1 (t = 1)

Concept A

Cargo Type #2 (t = 2)

Concept B Concept C

Cargo Type #3 (t = 3)

Concept D

Fig. 6 CAD models of concept plywood cart designs for each cargo
type

Figure 6 presents concept plywood cart designs pro-
viding the structural elements identified in the cargo type
definitions. The time sequence that these concepts are
assumed to be desired, based on the relative costs of the
concepts, is also illustrated in the figure by the assignment
of t = 1, 2, 3 to the stackable cargo (Concept A – Flatbed
Cart), low density non-stackable cargo (Concept B – Poles
w/Cloth Sides Cart, Concept C – Wood Slats w/Cloth Sides
Cart), and high density non-stackable cargo (Concept D –
Wood Sided Cart), respectively. Also, note that these repre-
sent non-modular cart concepts, and not a concept modular
system.

4.2 Method implementation

With a knowledge of the various cargo types and cart con-
cepts being considered, the results and information needed
to implement the method presented in Section 3 are now
provided.

Method Steps A & B: For this example the objectives
being considered are to minimize the sales price (S) and to
maximize the cart bed area or volumetric capacity (A and V

respectively), depending on whether or not the concept has
sides. In order to characterize the dynamic multiobjective
design space, analysis models for each of the identified cart
concepts are needed.

In addition to the models of S (sum of the material,
machining, and distribution costs all increased by a uniform
mark-up of 40 %) and A or V , stress models of the frame
(two different loading conditions), axle, and side concepts
are developed. The first frame loading condition (Fig. 7a)
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l1

hf

L / (2lb)

Fw

da /2h1

lo+ts /2

hc

lr
Fu /2

a

l1

hf

L / (2lb)

Fg

da /2h1

lo+ts /2

hc

lr
Fud /2

b

da

Fw

wb /2 - lo - ts /2

la /2

lo + ts + 3.175mm

3ts /2 + 19.05mm

c

dpo

hps

L / (3 lb np)

d

tws

hws

L / (3 lb nt)

e

L / (3 lb wb)

L
/(

3
l b

w
b)

lb
hws

tws

y y

z

z

x

f 

�Fig. 7 a Cart frame loading for Concepts A-D. b Cart frame loading
for dumping (only used by Concept D). c Axle loading for Concepts
A-D. d Cart bed sides loading for Concept B. e Cart bed sides loading
for Concept C. f Cart bed sides loading for Concept D

is applied to all concepts, assumes a maximum operational
load (L) is uniformly distributed along the cart bed length
(lb), and is supported on the cart frame rails (long side
members of the cart frame) by the reaction loads from the
wheels (Fw) and cart operator (Fu). The second frame load-
ing condition is only applied to Concept D, assumes the
same distributed load, but is now supported by the operator
and the end of the cart frame (See Fig. 7b) – simulates the
operator lifting the front of the cart to dump out the load.
For all of the concepts, the axle stress model looks at half of
the axle (frame prevents the center deflection of the axle),
and applies the wheel load from Fig. 7a as illustrated in
Fig. 7c. For the three cart concepts with sides (Concepts B,
C, and D), the assumed loads and boundary conditions used
to determine the stress in the side structures are provided in
Figs. 7d–f respectively.

It should be noted that for each concept, the frame is con-
nected without metal fasteners, and the axle passes through
the rails. As a result, the beams in Figs. 7a–b include stress
concentrations in the form of circular holes to approximate
the highest stress location cut-out for the implemented mor-
tise and tenon joints (larger centered hole), and the axle
(smaller non-centered hole). The formulas for both stress
concentration factors come from Charts 4.88 and 4.89 of
Pilkey and Pilkey (2008).

Definitions of the design objects (variables) shown in
Fig. 7, and all other design objects pertaining to this exam-
ple, are now provided:

lr Cart frame rail length (mm)
hr Overall height of the rails (mm)
lo Length of the bed overhanging the frame (mm)
ls Length of the plywood sheet (mm)
ws Width of the structure plywood sheet (mm)
ts Thickness of the structure plywood sheet (mm)
h1 Axle center-height from the bottom edge of the rail

(mm)
l1 Axle center-distance from the rail end (mm)
da Diameter of the axle (mm)
L Maximum desired operational cart load (N)
lb Length of the cart bed (mm)
wb Width of the cart bed (mm)
hc Height of the mortise cut-out in the rails (mm)
hf Height of the cart frame beam members (mm)
Fu Reaction force applied by the operator (N)
Fw Reaction force applied by one wheel (N)
Fud Reaction force applied by the operator when dump-

ing the cart load (N)
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Fg Reaction force applied by the ground when dumping
the cart load (N)

la Length of the axle (mm)
dpo Outer pole diameter for Concept B (mm)
dpi Inner pole diameter for Concept B (mm)
hps Height of Concept B sides (mm)
np Number of poles used in Concept B (mm)
hws Height of Concept C and D sides (mm)
tws Sheet thickness of Concept C and D sides (mm)
nt Number of tenons securing the Concept C sides
L

(i)
fail Cart failure load (N)

LF Load multiplier for calculating L
(i)
fail

hu Average waist height of the cart operator (mm)
dw Diameter of the plywood cart wheels (mm)
dt Diameter of the router tool (mm)
fr Feed rate of the router (mm/s)
φmach Hourly machining rate ($/hr)
φa Axle material price ($/mm)
φp Material price for pole sides ($/mm)
φws Material price for the wood sides ($/mm2)
Cbwnp Cost of bolts, washers, nuts, and pins ($)
σf Maximum frame stress (MPa)
σa Maximum axle stress (MPa)
σps Maximum stress in pole sides (MPa)
σws Maximum stress wood sides (MPa)
θ Bed angle while transporting cargo (rad)
ḡ1 Calculated difference between lb/2 and l1 (m)
ḡ2 Calculated difference between lr and lb (m)
ḡ3 Calculated clearance of the Concept D sides above

the wheels (m)
ḡ4 Calculated difference between ls and lr (m)
ḡ5 Calculated left-over sheet width (m), assuming the

rails/bed are cut as shown in Fig. 8

A summary of each concept’s design objects for t =
{1, 2, 3}, along with the corresponding values of x

(k(t))
l ,

x
(k(t))
u , and the diagonal entries in w(k(t)) needed to evalu-

ate (P1) are provided in Table 1. It should be noted that the
bounds of the anticipated regions of interest as defined in
Section 3.2 (Step B) are presented in Table 1 as the listed

values of S
(k(t))
l and S

(k(t))
u . In addition, for this example it

is assumed the values of y(k(t)) have bounded uncertainties
that result in the domain (h) of the uncertain parameters (c)

being defined as c
(k(t))
l ≤ c(k(t)) ≤ c

(k(t))
u . The values of

c
(k(t))
l and c

(k(t))
u needed to evaluate (P1) are also provided

in Table 1.
Using MATLAB’s fmincon function, the resulting

dynamic s-Pareto frontier for the non-modular cart concepts
shown in Fig. 6 at each time step within the identified region
of interest is illustrated in Fig. 9. From Fig. 9, it can be seen
that due to the changes in loading conditions, concepts, and
required analysis models, the s-Pareto frontier does change.

Flat Sheet Part Layout (i = 0) Flat Bed Platform Iteration (i = 0)

Module #1 Parts Pole w/Cloth Sides Iteration (i = 1)

Module #2 Parts/Sheet Layout Wood Sides Iteration (i = 2)

Modular System Architecture Prototype

Fig. 8 Illustrations of the modular cart system concept iterations, the
flat sheet part layouts for the platform and module #2, the module #1
parts, and a preliminary physical prototype that was field tested in Peru

In addition, it should also be observed that although Con-
cepts B and C are considered for t = 2, Concept C does
not contribute to the s-Pareto frontier for t = 2 because it is
always dominated by Concept B in terms of the objectives
for t = 2 to minimize the sales price (S) and maximize the
volumetric cart capacity (V ).

Method Steps C & D: In considering the differences
between the concepts that comprise the dynamic s-Pareto
frontier shown in Fig. 9, a slot modular architecture (Ulrich
and Eppinger 2004) approach is selected for the modular
cart development. The subsequent definitions of nm and δ

are as follows:

nm = 2 (28)

δ =
⎡
⎣ 1 1

1 2
1 3

⎤
⎦ (29)

Using this knowledge of the desired modular progression
and architecture, the modular cart system concept is devel-
oped. In order to reduce the material and machining costs
of the modular system, a structural topology was manually
selected in which all structural elements of the platform cart
design (flat bed cart) could be cut from a single sheet of



An optimization-based method for designing modular systems 757

Ta
bl

e
1

V
al

ue
s

of
th

e
de

si
gn

ob
je

ct
s

(x
),

un
ce

rt
ai

n
pa

ra
m

et
er

(c
)

do
m

ai
n

li
m

it
s,

an
d

th
e

ob
je

ct
iv

e
id

en
ti

fi
er

s
(d

ia
go

na
le

nt
ri

es
in

w
(k

(t
)
)
)

ne
ed

ed
to

ev
al

ua
te

(P
1)

fo
r

th
e

ca
rt

ex
am

pl
e

t
=

1
t
=

2
t
=

3

k
=

1
k

=
1

k
=

2
k

=
1

x
(u

ni
ts

)
w

x
l

x
u

c l
c u

w
x
l

x
u

c l
c u

w
x
l

x
u

c l
c u

w
x
l

x
u

c l
c u

d
a

(m
m

)
0

19
.0

5
19

.0
5

−0
.0

51
0

0
19

.0
5

19
.0

5
−0

.0
51

0
0

19
.0

5
19

.0
5

−0
.0

51
0

0
19

.0
5

19
.0

5
−0

.0
51

0

l b
(m

m
)

0
11

43
16

25
.6

−0
.2

54
0.

25
4

0
11

43
16

25
.6

−0
.2

54
0.

25
4

0
11

43
16

25
.6

−0
.2

54
0.

25
4

0
11

43
16

25
.6

−0
.2

54
0.

25
4

w
b

(m
m

)
0

60
9.

6
81

2.
8

−0
.2

54
0.

25
4

0
60

9.
6

81
2.

8
−0

.2
54

0.
25

4
0

60
9.

6
81

2.
8

−0
.2

54
0.

25
4

0
60

9.
6

81
2.

8
−0

.2
54

0.
25

4

h
f

(m
m

)
0

95
.2

5
10

7.
95

−0
.2

54
0.

25
4

0
95

.2
5

10
7.

95
−0

.2
54

0.
25

4
0

95
.2

5
10

7.
95

−0
.2

54
0.

25
4

0
95

.2
5

10
7.

95
−0

.2
54

0.
25

4

l 1
(m

m
)

0
50

8
71

1.
2

−0
.2

54
0.

25
4

0
50

8
71

1.
2

−0
.2

54
0.

25
4

0
50

8
71

1.
2

−0
.2

54
0.

25
4

0
50

8
71

1.
2

−0
.2

54
0.

25
4

h
1

(m
m

)
0

25
.4

34
.9

−0
.2

54
0.

25
4

0
25

.4
34

.9
−0

.2
54

0.
25

4
0

25
.4

34
.9

−0
.2

54
0.

25
4

0
25

.4
34

.9
−0

.2
54

0.
25

4

t s
(m

m
)

0
19

.0
5

28
.5

8
−1

.7
78

0
0

19
.0

5
28

.5
8

−1
.7

78
0

0
19

.0
5

28
.5

8
−1

.7
78

0
0

19
.0

5
28

.5
8

−1
.7

78
0

w
s

(m
m

)
0

11
93

.8
11

93
.8

−1
.5

88
0

0
11

93
.8

11
93

.8
−1

.5
88

0
0

11
93

.8
11

93
.8

−1
.5

88
0

0
11

93
.8

11
93

.8
−1

.5
88

0

l s
(m

m
)

0
24

38
.4

24
38

.4
−1

.5
88

0
0

24
38

.4
24

38
.4

−1
.5

88
0

0
24

38
.4

24
38

.4
−1

.5
88

0
0

24
38

.4
24

38
.4

−1
.5

88
0

l o
(m

m
)

0
38

.1
38

.1
0

0
0

38
.1

38
.1

0
0

0
38

.1
38

.1
0

0
0

38
.1

38
.1

0
0

d
t

(m
m

)
0

9.
52

5
9.

52
5

0
0

0
9.

52
5

9.
52

5
0

0
0

9.
52

5
9.

52
5

0
0

0
9.

52
5

9.
52

5
0

0

f
r

(m
m

/s
)

0
50

.8
50

.8
0

0
0

50
.8

50
.8

0
0

0
50

.8
50

.8
0

0
0

50
.8

50
.8

0
0

L
(N

)
0

22
24

.1
22

24
.1

0
0

0
22

24
.1

22
24

.1
0

0
0

22
24

.1
22

24
.1

0
0

0
22

24
.1

22
24

.1
0

0

L
F

0
2

10
0

0
0

0
2

10
0

0
0

0
2

10
0

0
0

0
2

10
0

0
0

h
c

(m
m

)
0

47
.6

25
53

.9
75

−0
.2

55
0.

25
4

0
47

.6
25

53
.9

75
−0

.2
55

0.
25

4
0

47
.6

25
53

.9
75

−0
.2

55
0.

25
4

0
47

.6
25

53
.9

75
−0

.2
55

0.
25

4

h
u

(m
m

)
0

88
9

88
9

0
0

0
88

9
88

9
0

0
0

88
9

88
9

0
0

0
88

9
88

9
0

0

φ
m

ac
h

($
/h

r)
0

20
20

0
0

0
20

20
0

0
0

20
20

0
0

0
20

20
0

0

φ
a

($
/m

)
0

4.
10

4.
10

0
0

0
4.

10
4.

10
0

0
0

4.
10

4.
10

0
0

0
4.

10
4.

10
0

0

C
bw

np
($

)
0

2
2

0
0

0
2

2
0

0
0

2
2

0
0

0
2

2
0

0

l r
(m

m
)

0
18

28
.8

23
33

.6
−0

.2
55

0.
25

4
0

18
28

.8
23

33
.6

−0
.2

55
0.

25
4

0
18

28
.8

23
33

.6
−0

.2
55

0.
25

4
0

18
28

.8
23

33
.6

−0
.2

55
0.

25
4

h
r

(m
m

)
0

25
4

57
4.

7
−0

.2
55

0.
25

4
0

25
4

57
4.

7
−0

.2
55

0.
25

4
0

25
4

57
4.

7
−0

.2
55

0.
25

4
0

25
4

57
4.

7
−0

.2
55

0.
25

4

d
w

(m
m

)
0

50
8

76
2

−0
.2

55
0.

25
4

0
50

8
76

2
−0

.2
55

0.
25

4
0

50
8

76
2

−0
.2

55
0.

25
4

0
50

8
76

2
−0

.2
55

0.
25

4

h
p
s

(m
m

)
–

–
–

–
–

0
12

19
.2

18
28

.8
−0

.2
55

0.
25

4
–

–
–

–
–

–
–

–
–

–

n
p

–
–

–
–

–
0

8
8

0
0

–
–

–
–

–
–

–
–

–
–

d
p
o

(m
m

)
–

–
–

–
–

0
33

.4
33

.4
−0

.1
27

0.
12

7
–

–
–

–
–

–
–

–
–

–

d
p
i

(m
m

)
–

–
–

–
–

0
26

.2
4

26
.2

4
−0

.1
27

0.
12

7
–

–
–

–
–

–
–

–
–

–

φ
p

($
/m

)
–

–
–

–
–

0
2.

38
2.

38
0

0
–

–
–

–
–

–
–

–
–

–

h
w

s
(m

m
)

–
–

–
–

–
–

–
–

–
–

0
25

4
93

9.
8

−0
.2

54
0.

25
4

0
30

2.
2

30
4.

8
−0

.2
54

0.
25

4

n
t

(m
m

)
–

–
–

–
–

–
–

–
–

–
0

8
8

0
0

–
–

–
–

–

t w
s

(m
m

)
–

–
–

–
–

–
–

–
–

–
0

12
.7

12
.7

−0
.1

78
0

0
12

.7
12

.7
−0

.1
78

0

w
st

(m
m

)
–

–
–

–
–

–
–

–
–

–
0

38
.1

50
.8

−0
.2

54
0.

25
4

0
38

.1
50

.8
−0

.2
54

0.
25

4

φ
w

s
($

/m
2
)

–
–

–
–

–
–

–
–

–
–

0
30

30
0

0
0

30
30

0
0

S
($

)
1

60
10

5
–

–
1

95
15

3
–

–
1

95
15

3
–

–
1

11
2

15
4

–
–



758 P. K. Lewis, C. A. Mattson

Ta
bl

e
1

(c
on

ti
nu

ed
)

t
=

1
t
=

2
t
=

3

k
=

1
k

=
1

k
=

2
k

=
1

A
(m

2
)

−1
0.

69
7

1.
33

3
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

V
(m

3
)

–
–

–
–

–
−1

1.
14

7
2.

32
7

–
–

−1
1.

14
7

2.
32

7
–

–
−1

0.
22

9
0.

55
7

–
–

L
fa

il
(N

)
0

44
48

.2
22

24
1

–
–

0
44

48
.2

22
24

1
–

–
0

44
48

.2
22

24
1

–
–

0
44

48
.2

22
24

1
–

–
σ

f
(M

Pa
)

0
0

76
.5

32
–

–
0

0
76

.5
32

–
–

0
0

76
.5

32
–

–
0

0
76

.5
32

–
–

σ
a

(M
Pa

)
0

0
34

4.
7

–
–

0
0

34
4.

7
–

–
0

0
34

4.
7

–
–

0
0

34
4.

7
–

–
σ

p
s

(M
Pa

)
–

–
–

–
–

0
0

99
.6

3
–

–
–

–
–

–
–

–
–

–
–

–
σ

w
s

(M
Pa

)
–

–
–

–
–

–
–

–
–

–
0

0
76

.5
32

–
–

0
0

76
.5

32
–

–
θ

(r
ad

)
0

0
0.

29
7

–
–

0
0

0.
29

7
–

–
0

0
0.

29
7

–
–

0
0

0.
29

7
–

–
F

u
(N

)
0

0
44

4.
8

–
–

0
0

44
4.

8
–

–
0

0
44

4.
8

–
–

0
0

44
4.

8
–

–
F

u
d

(N
)

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0

0
22

24
.1

–
–

ḡ
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ḡ
2

(m
)

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0

0
∞

–
–

ḡ
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of this concept, including the necessary interface features
for pole and box sides is illustrated in Fig. 8. Also shown
in Fig. 8 are images of the CAD models of the assembled
system iterations, the two modules (pole w/cloth and box
side), and a picture of a preliminary physical prototype that
was built and field tested in Peru (prototype created with
28.58 mm plywood). It should be noted that the purpose of
this field testing was to validate the bounds of the regions
of interest and the uncertain area of the regions of interest
illustrated in Fig. 9. As such, since the purpose of this first
prototype was to illustrate the design concept to the target
group in Peru, the design of the illustrated prototype was
set by the authors intuition without the use of numerical
optimization.

Method Step E: In order to facilitate the modular sys-
tem identification, the limits of the modular-system design
objects (x̂u/ l), the corresponding diagonal entries in ŵ, and
the domain limit vectors of the modular-system uncertain
parameters (ĉu/ l) needed to evaluate (P2) are provided in
Table 2. The bounds of the uncertain areas of the regions of
interest (Ŝ(i)

u/ l,unc) needed to evaluate (P2) are also provided
in Table 2.

Optimization of the modular system is also performed
using MATLAB’s fmincon function, with the modular cart
system design being directly selected using a weighted-
sum aggregate objective function (wJ = {0.5, 1, 1}, Ĉ =
{Â(0), V̂ (1), V̂ (2)},w

Ĉ
= 1.5). The aggregate objective

function and penalty function (�̂) definitions used to evalu-
ate (P2) are provided below:

�̂(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
(

V̂ (i)−μ̂
(i)
u,unc

V̂
(i)
u −μ̂

(i)
u,unc

+ 1

)−1

, V̂ (i) > μ̂
(i)
u,unc

1 −
(

μ̂
(i)
l,unc−V̂ (i)

μ̂
(i)
l,unc−V̂

(i)
l

+ 1

)−1

, V̂ (i) > μ̂
(i)
l,unc

0 , else

(30)

J =
nm∑
i=0

(
w

(i)
J · (�̂(i) + �̂(i)) − w

Ĉ
· Ĉ(i)

)
(31)

Figure 9 presents the objective space results for the
optimized modular cart system and preliminary prototype.
Although both systems are within the identified regions of
interest, the prototype system has an average �̂ and �̂ of
0.57 and 0.33, while the optimized system has averages of
0.04 and 0 respectively – represents ∼93 % and 100 %
respective improvements. Figure 10 provides images of a
physical prototype implementing the optimization results.

5 Concluding remarks

In response to the limitations of a six-step modular-system
optimization method developed by the authors (Lewis and
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Table 2 Limit values of the
modular-system design objects
(x̂u/l), uncertain parameter
domain limits (ĉu/l), and the
corresponding diagonal entries
in ŵ(i) needed to evaluate (P2)

x̂ ŵ(0) ŵ(1) ŵ(2) xl xu cl cu

d̂a 0 0 0 19.05 19.05 −0.051 0

l̂b 0 0 0 1143 1625.6 −0.254 0.254

ŵb 0 0 0 609.6 812.8 −0.254 0.254

ĥf 0 0 0 95.25 107.95 −0.254 0.254

l̂1 0 0 0 508 711.2 −0.254 0.254

ĥ1 0 0 0 25.4 34.9 −0.254 0.254

t̂s 0 0 0 19.05 28.58 −1.778 0

ŵs 0 0 0 1193.8 1193.8 −1.588 0

l̂s 0 0 0 2438.4 2438.4 −1.588 0

l̂o 0 0 0 38.1 38.1 0 0

d̂t 0 0 0 9.525 9.525 0 0

f̂r 0 0 0 50.8 50.8 0 0

L̂ 0 0 0 2224.1 2224.1 0 0

L̂F 0 0 0 2 100 0 0

ĥc 0 0 0 47.625 53.975 −0.255 0.254

ĥu 0 0 0 889 889 0 0

φ̂mach 0 0 0 20 20 0 0

φ̂a 0 0 0 4.10 4.10 0 0

Ĉbwnp 0 0 0 2 2 0 0

l̂r 0 0 0 1828.8 2333.6 −0.255 0.254

ĥr 0 0 0 254 574.7 −0.255 0.254

d̂w 0 0 0 508 762 −0.255 0.254

ĥps – 0 – 1219.2 1828.8 −0.255 0.254

n̂p – 0 – 8 8 0 0

d̂po – 0 – 33.4 33.4 −0.127 0.127

d̂pi – 0 – 26.24 26.24 −0.127 0.127

φ̂p – 0 – 2.38 2.38 0 0

ĥws – – 0 302.2 304.8 −0.254 0.254

t̂ws – – 0 12.7 12.7 −0.178 0

φ̂ws – – 0 30 30 0 0

Ŝ(0) 1 – – 60 105 – –

Â(0) −1 – – 0.697 1.333 – –

L̂
(i)
fail 0 0 0 4448.2 22241 – –

σ̂
(i)
f 0 – 0 0 76.532 – –

σ̂a 0 – – 0 344.7 – –

θ̂ 0 – – 0 0.297 – –

F̂u 0 – – 0 444.8 – –
ˆ̄g1 0 – – 0 ∞ – –
ˆ̄g2 – – 0 0 ∞ – –
ˆ̄g3 0 – – 0.686 0.762 – –
ˆ̄g4 0 – – 0 ∞ – –
ˆ̄g5 0 – – 0 ∞ – –

Ŝ(1) – 1 – 95 153 – –

V̂ (1) – −1 – 1.147 2.327 – –

σ̂ps – 0 – 0 99.63 – –

Ŝ(2) – – 1 112 154 – –

V̂ (2) – – −1 0.229 0.557 – –

σ̂ws – – 0 0 76.532 – –

F̂ud – – 0 0 2224.1 – –
ˆ̄g6 – – 0 0 0 – –
ˆ̄g7 – – 0 0 ∞ – –
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Fig. 9 Representation of the s-pareto frontier obtained for each time-
step(cargotype), alongwith theperformanceofeachiterationofboth the
preliminary prototype in Fig. 8 and the optimized modular cart system

Mattson 2012), an improved five-step method that builds
on recent developments in multiobjective problem formula-
tions of dynamic s-Pareto frontiers was presented. Notable
improvements to the method include: (i) the added abil-
ity to allow for changes in system concepts and analysis
models at different time-steps, and (ii) the inclusion of
provisions for incorporating uncertainty analysis. The pre-
sented method provides a quick and efficient framework

Flat Bed Platform Iteration (i = 0) Pole w/Cloth Sides Iteration (i = 1)

Wood Sides Iteration (i = 2)

Fig. 10 Images of a physical prototype created with 19.05 mm ply-
wood implementing the modular cart system optimization results
represented in Fig. 9

to explore the design space at each known time-step, and
leverages the entire dynamic s-Pareto frontier within iden-
tified regions of interest at each time-step to guide the
development and identification of a modular system design.
Application of the presented method was illustrated through
the identification of a modular plywood cart for develop-
ing countries capable of adapting to three different cargo
types.

The usefulness of the presented method can be observed
through the comparison of the modular cart system perfor-
mance in terms of the Pareto offset (�̂), and the uncertain
region of interest penalty (�̂) for the different iterations of
a preliminary prototype and the optimized modular system.
By incorporating within the method the ability to identify
the dynamic s-Pareto Frontier (allow for changes in system
concepts/analysis models) and account for uncertainty, the
optimization of the modular-system was improved by reduc-
ing the average �̂ and �̂ by ∼93 % and 100 % respectively
compared to the preliminary prototype. In addition, recog-
nizing the importance of cost in developing products for
those in extreme poverty ($30 ≈ 1 months income), the opti-
mized modular cart respectively reduced the overall price
of the three system iterations by $27.31 (∼27 %), $19.60
(∼14 %), and $27.33 (∼18 %) compared to the preliminary
prototype design.

In considering the use of the presented method, it should
be noted that the method is limited to applications where
the design concepts, analysis models, use environments,
and/or design selection preferences can be predicted with
reasonable accuracy. As such, in fast paced industries where
new technologies or materials are developed quickly, the
presented method does have limitations. However, if the
improvements in technologies/materials can be predicted
with some indication of the uncertainty in that prediction,
then the method could be used to help designers/engineers
to look beyond the current product/iteration to make better
decisions in the present. Specifically, early stage platforms
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and modules could be designed to better interface with new
technologies before they are fully developed.
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