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Abstract Considering how the resolution of conflicts changes over time is an aspect
of multiobjective optimization that is not commonly explored. These considerations
embody changes in both the preferences that dictate the selection of Pareto designs,
and changes in the Pareto frontier itself over time, or s-Pareto frontier when a set of
disparate design concepts are considered. As such, this paper explores the idea of dy-
namic s-Pareto frontiers and preferences. Specifically, this paper presents a dynamic
multiobjective optimization problem formulation that provides a framework of iden-
tifying the s-Pareto frontier for a series of time steps. The application of the presented
dynamic formulation is illustrated through a simple aircraft design example. Through
this example it was observed that the identification of the dynamic s-Pareto frontier
enabled the observation of the impact of design decisions on the offset of selected
designs from the identified dynamic frontier. By measuring and minimizing the air-
craft design offset, the selected aircraft design offset was improved by an average
of roughly 60 % from the next best selected alternative identified using traditional
selection methods.

Keywords Multiobjective optimization · s-Pareto frontier · Dynamic multiobjective
problem formulation · Decision making

Nomenclature
μ Vector of design objectives
x Vector of design variables/objects
y Vector of independent design objects
z Vector of dependent design objects
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n[ ] indicates the number of [ ]
[ ]l indicates the lower limit of [ ]
[ ]u indicates the upper limit of [ ]
[ ]∗ indicates the optimal value of [ ]

1 Introduction

Engineering design is a multifaceted decision making process that often involves sev-
eral conflicting design objectives. One facet that is not commonly considered is how
the resolution of conflicts changes over time. That is, how to consider changes in
both the preferences that dictate the selection of Pareto designs, and changes in the
Pareto frontier itself over time, or s-Pareto frontier in the case where a set of disparate
design concepts are considered. When developing a single product for multiple sce-
narios, a common approach in multiobjective optimization is to combine the product
performance in each scenario into a single aggregate performance (Messac 2000). As
a result, valuable information about the design space for individual scenarios is lost,
and the effect of design decisions on the performance of a product in a given scenario
is difficult to interpret.

In terms of individual design scenarios, the idea of changing design selection due
to changes in preference is illustrated is Fig. 1(a) where the points P (1), P (2), and
P (3) represent the designs selected along the Pareto frontier (bold line) at times 1,
2, and 3 respectively. Recognizing that Pareto/s-Pareto frontiers, and the resulting
design space, may be dynamic due to model, concept, or environmental changes,
Fig. 1(b) demonstrates the concept of both dynamic s-Pareto frontiers and prefer-
ences. From these figures it is observed that in situations where these changes can be
predicted, these dynamic s-Pareto frontiers and preferences can and should be con-
sidered when making design decisions in the present. Examples of situations where
these changes could be predicted include changes in manufacturing cost models due
to economies of scale, planned implementation of new technologies, ranges of known
operating environments, and governmental performance regulation changes (i.e., gas
mileage requirements of vehicles).

This paper explores the idea of dynamic s-Pareto frontiers and preferences. Specif-
ically, what they are, how they are obtained, and how they can be used to make better
decisions in the present. In order to facilitate this exploration, a discussion of multi-
objective optimization and the types of changes that existing methods could address
is provided in Sect. 2. Section 3 presents a new optimization formulation capable of
constructing dynamic Pareto frontiers in the presence of known/predicted changes
in preferences, models, concepts, and operating environment. A simple aircraft de-
sign example illustrating the implementation of the presented dynamic optimization
formulation is provided in Sect. 4, followed by concluding remarks in Sect. 5.

2 Literature review

Fundamental to the concept of dynamic Pareto frontiers is the need to balance con-
flicting design objectives. One common method to balance design objectives is by
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Fig. 1 (a) Design selections
over time due to changing
preference. (b) Design
selections due to both changing
preference and changing
models, concepts, and/or
environment

identifying non-dominated designs (Miettinen 1999; Messac and Mattson 2002) us-
ing multiobjective optimization (Yun et al. 2009; Kasprzak and Lewis 2000). The
concept of non-dominance for the minimization of two objectives (μ1 and μ2), is
represented in Figs. 1(a) and 1(b) as the Pareto/s-Pareto frontier (bold lines), where
the Pareto/s-Pareto frontier characterizes the trade-offs between the objectives (Gar-
denghi and Wiecek 2011; Faulkenberg and Wiecek 2010).

A generic multiobjective optimization problem (MOP) formulation yielding a
set of optimal solutions (D := {(x(k)∗

1 , x
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Subject to g
(k)
q (x(k),p(k)) ≤ 0, h

(k)
v (x(k),p(k)) = 0, and x

(k)
j l ≤ x

(k)
j ≤ x

(k)
ju . Where k

denotes the k-th design concept; μ
(k)
i denotes the i-th generic design objective for the

k-th design concept; x(k) is a vector of design variables for the k-th design concept;
and p(k) is a vector of design parameters for the k-th design concept. Note that the
s-Pareto frontier resulting from P1 is a static solution, only valid at a single instance
in time.

The selection of a Pareto-optimal solution typically involves the construction of
an aggregate objective function that implements knowledge of the objective func-
tion parameters and sometimes constraints to capture customer needs or preferences
(Messac et al. 2000; Messac 2000). Within the context of this paper, changes in Pareto
solutions and preferences over time introduce unique challenges in selecting Pareto-
optimal solutions. These changes can result from preference, model, concept, or envi-
ronmental changes. In the context of this paper we will use the following descriptions
of these sources of change:

(i) Preferences refer to the customer desires/needs that dictate the selection of
Pareto designs (e.g., constraints, model inputs, or functions/methods of selecting
a final design from a set of options).

(ii) Models refer to the design models used to analyze a design (e.g., analysis func-
tions with specified inputs/outputs).

(iii) Concepts refer to the design concepts that the design models analyze (e.g., spe-
cific collections of analysis functions that model complete concept systems).

(iv) Environment refers to the operating environment of the final product/system
(e.g., elements of the implementation environment that impact constraint lim-
its and fixed model inputs).

Table 1 is provided in order to illustrate what combinations of changes have re-
ceived attention in multiobjective optimization literature. Table 1 presents every pos-
sible combination of these potential sources of change, along with publications pre-
senting methods capable of allowing for the identified combination.

It should be observed from Table 1 that publications exist that have the potential
to allow for changes in concept, preference, and environment, but are for specific
design approaches [e.g., modular products (Lewis and Mattson 2012; Lewis et al.
2011), families of products (Yang et al. 2004; Simpson 1998), and reconfigurable/
adaptable/flexible systems (Khire and Messac 2008; Olewnik et al. 2004; Siddiqi and
de Weck 2008)]. In addition, it should be observed that no publications/methods ex-
ist for combinations that contain changes in design models. This gap in publications
is in part due to the form of the traditional MOP described earlier, and the inherent
difficulty this formulation has in adapting to an evolving design problem as described
in Curtis et al. (2013). Although changes in preferences and environments would not
generally result in changes in analysis models, a formulation that enables changes in
concepts would potentially need to adapt to new models introduced by the identifi-
cation of new concepts. As such, a new MOP formulation that efficiently identifies a
dynamic s-Pareto frontier resulting from changes in preference, model, concept, and
environment is needed.



Considering dynamic Pareto frontiers in decision making 841

Table 1 Presentation of potential sources of change (columns 1–4) and publications (column 5) that
allow for the indicated sources of change. For each combination, only sources of change with an “x” in the
corresponding column are considered to change

Sources of change Publications

Preference Model Concept Environment Y/N Citations

x x x x N –

x x x N –

x x x N –

x x x Y Lewis and Mattson (2012)

Yang et al. (2004)

Simpson (1998)

x x x N –

x x N –

x x Y Lewis and Mattson (2012)

Yang et al. (2004)

Simpson (1998)

x x Y Lewis and Mattson (2012)

Lewis et al. (2011)

Yang et al. (2004)

Simpson (1998)

x x N –

x x N –

x x Y Lewis and Mattson (2012)

Yang et al. (2004)

Simpson (1998)

x Y Lewis and Mattson (2012)

Lewis et al. (2011)

Yang et al. (2004)

Simpson (1998)

x N –

x Y Yang et al. (2004)

Simpson (1998)

x Y Khire and Messac (2008)

Olewnik et al. (2004)

Siddiqi and de Weck (2008)

Blackwell and Branke (2004)

Hatzakis and Wallace (2006)

Trautmann and Mehnen (2009)

Y Traditional MOP



842 P.K. Lewis et al.

3 Dynamic s-Pareto frontier formulation

The problem formulation presented in this section builds on the recent developments
in dynamic MOP formulations presented in Curtis et al. (2013). Specifically, Cur-
tis et al. (2013) focused on design space exploration in early stages of design, and
demonstrated the efficiency of using a dynamic MOP with evolving design prob-
lems. The dynamic MOP presented in this section alters the dynamic MOP presented
in Curtis et al. (2013) to enable the change from exploring the design space, to identi-
fying the dynamic s-Pareto frontier for a series of known sources of change combina-
tions. Quickly identifying the dynamic s-Pareto frontier then enables and encourages
its use to guide and improve design decisions.

As MOP formulations change, what was a design parameter in one formulation
could be an inequality constraint in the next formulation. Thus to avoid confusion,
any variable, parameter, constraint, or objective associated with a design is termed a
design object (Curtis et al. 2013). With this understanding, a generic dynamic multi-
objective optimization problem capable of identifying the dynamic s-Pareto frontier,

Da := {(x(k(t))∗
1 , . . . , x

(k(t))∗
n

(k(t))
x

)|∀t ∈ (1,2, . . . , nt )}, is presented as Problem 2 (P2):
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where:
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(6)

n(k(t))
x = n(k(t))

y + n(k(t))
z (7)

where x(t) is a vector composed of independent (y(k(t))) and dependent (z(k(t))) design
objects at time step t ; and the objectives identifier matrix, χ(k(t)), is a diagonal matrix

for time step t , where χ
(k(t))
i,i ∈ {−1,0,1}.

It should be noted that, with a few exceptions, P2 is very similar to the generic
s-Pareto MOP formulation (P1) presented in Sect. 2. For instance, the nature of x

has changed to include independent and dependent design objects. In P1, x only con-
tained independent design variables. The role of each design object is determined by
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Table 2 Conditions for
specifying design objects and
object limits

Design object xi Condition

Minimized objective χ
(k(t))
i,i

= 1

Maximized objective χ
(k(t))
i,i

= −1

Non-objective χ
(k(t))
i,i

= 0

Inequality constraint x
(k(t))
l,i

�= x
(k(t))
u,i

AND i > n
(k(t))
y

Equality constraint x
(k(t))
l,i

= x
(k(t))
u,i

AND i > n
(k(t))
y

Design variable x
(k(t))
l,i

�= x
(k(t))
u,i

AND i ≤ n
(k(t))
y

Design parameter x
(k(t))
l,i

= x
(k(t))
u,i

AND i ≤ n
(k(t))
y

Eqs. (3)–(5), and the conditions determining a design object’s behavior are summa-
rized in Table 2 (Curtis et al. 2013). Additionally, we note that P2 is minimized over
y(k(t)) rather than x(k(t)) to ensure that the problem is mathematically valid.

It should be noted that P1 and P2 will yield the same s-Pareto frontier for a given t .
However, the benefit of the formulation of P2, is that the MOP is established to be
able to quickly and efficiently identify the dynamic s-Pareto frontier for all selected
values of t . As such, the ability to use of this information to guide and improve
design decisions is provided. In the next section, implementation of the presented
dynamic formulation and the ability of the resulting dynamic s-Pareto frontier to
improve design decisions is illustrated through a simple aircraft example with three
design scenarios.

4 Aircraft example

This section implements the formulation presented in P2 for an example based on nu-
merical aircraft performance models presented in Heintz (2002) and Nigam and Kroo
(2008). Motivation for this example comes from the Lockheed C-130 Hercules which
has been enormously successful because the versatility of its design, which imparts
the ability to perform many different tasks. Designed in 1951 to meet the needs of the
Korean War (Bowman 1999), initial design requirements specified cargo capacity, the
ability to take off from short airstrips, and the ability to fly slow enough for paradrops.
Though different from the missions considered in the design, the C-130 has also been
successfully used as a cargo transport, a refueling aircraft, a weather reconnaissance
aircraft, and a combat gunship. To perform these new missions the aircraft was mod-
ified to meet these roles after being produced as standard C-130 models, providing a
versatility that has made the platform a success (Smith 2001). In light of the focus of
this paper and the various modifications that the C-130 has received over the years,
the question arises of how the C-130 might have been designed if the many different
missions this aircraft would need to perform were known and considered during the
aircraft’s development. Building from the concept of this question, the given example
sets forth a method of illustrating how an optimization problem can be formulated to
account for many different changes.
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Fig. 2 Generic mission profile used to define the needed aircraft performance at different time-steps.
Parameter definitions are provided in Table 4

Table 3 Summary of the concepts and objectives considered at each time-step (t )

t Concept 1
95 ≤ ϕ ≤ 125
2.2 ≤ CL,fd ≤ 2.5
30 ≤ b ≤ 50

Concept 2
85 ≤ ϕ ≤ 110
1.8 ≤ CL,fd ≤ 2.1
25 ≤ b ≤ 45

Concept 3
75 ≤ ϕ ≤ 90
1.5 ≤ CL,fd ≤ 1.8
20 ≤ b ≤ 35

Objectives

1 x x – min{W,P }
2 x x x min{W,P }
3 – x x min{W,P, T̂lost}

For this example all identified sources of change are considered. Changes in pref-
erence and environment are represented in three scenarios as a series of changes in
the aircraft mission profile for each scenario/time-step. Figure 2 provides the generic
mission profile implemented in this example. The mission parameters shown in Fig. 2
are defined with the model descriptions provided below (see Table 4).

A summary of the concepts and objectives considered at each time-step are pro-
vided in Table 3, where W is the total aircraft weight, P is a measure of the aircraft
take-off/climb performance, and T̂lost is the surveillance time lost per degree of turn.
As shown in Table 3, changes in aircraft concepts are differentiated by the ranges of
available engine power (ϕ) in billion horse power (bhp), maximum flaps down lift co-
efficient (CL,fd), and the aircraft wing span (b) in feet. Changes in concepts over time
are represented in Table 3 by the introduction of Concept 3 at time-step two, and the
removal of Concept 1 at time-step three. Changes in model are also represented in Ta-
ble 3 by the introduction of a new objective and corresponding analysis model for the
final time-step. The introduction of T̂lost as an objective in the final time-step (t = 3)
indicates that for this mission the aircraft will be performing surveillance tasks, and
consequently needs to be able to turn as quickly as possible, which assumes that no
usable surveillance is captured while executing a turn.
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4.1 Analysis model descriptions

To identify the s-Pareto frontiers at each time-step for the objectives identified in
Table 3 requires two analysis models—application of these models differs for each
concept by the ranges of the model inputs presented in Table 3. The first model cal-
culates values of P and W , and comes from (Heintz 2002). The needed analysis
functions are provided below:

Wf = E · rf · ϕ (8)

Wu = Wf + Wc (9)

W = Wu · (1 + reu) (10)

Sfd = 391W

V 2
s,fd · CL,fd

(11)

Sc = 391W

V 2
s,c · CL,c

(12)

S = max(Sfd, Sc) (13)

Vmax = 180 3

√
ϕ

S + 100
(14)

P =
(

W

S

)
·
(

W

ϕ

)
(15)

A = b2

S
(16)

Vz = 7000 · 4
√

A

W/ϕ
(17)

Zmax = 16 · Vz (18)

V̂max = 1

0.9 · Vmax
·
{

max(Vcr,Vsp,Vturn), for t = 3

max(Vcr,Vsp), else
(19)

Ẑmax = max(Zcr ,Zsp )

Zmax
(20)

The second model calculates values of T̂turn, and comes from Nigam and Kroo
(2008). The needed analysis functions are provided below:

ηmax = 1.0752ρV 2
turn · S · CL,c

W − Wf
4

(21)

Rturn = 2.1503V 2
turn

g
√

η2
max − 1

(22)

D̂turn = πRturn

180
(23)
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Table 4 Definitions of the model variables in Eqs. (8)–(24)

ϕ Engine horse power (bhp) Wf Useful load (lbs)

E Required endurance (hrs) Wu Useable weight (lbs)

rf Fuel consumption rate (lbs/hr-bhp) Wc Weight of cargo and occupants (lbs)

reu Ratio of empty weight to usable
weight (lbs/lbs)

Vs,fd Stall velocity with wing flaps down
(mph)

Sfd Area of flaps down wings (ft2) W Total Aircraft Weight (lbs)

CL,fd Coefficient of lift with wing flaps
down

CL,c Coefficient of lift with clean wings

Sc Area of clean wings (ft2) b Wing span (ft)

S Minimum needed wing area (ft2) Vs,c Stall velocity of clean wings (mph)

P Maximum takeoff/climb
performance (lbs2/ft2-bhp)

Vmax Maximum possible aircraft velocity
(mph)

A Wing aspect ratio ηmax Maximum aircraft load factor

V̂max Ratio of the maximum required
mission velocity to 90 % of Vmax

Vturn Aircraft Velocity while executing a
turn (mph)

Vcr Required mission cruise speed (mph) Vsp Required mission sprint speed (mph)

Zmax Service ceiling (maximum possible
flight elevation) (ft)

Ẑmax Ratio of the maximum required
mission elevation to Zmax

Zcr Mission cruise elevation (ft) Zsp Mission sprint elevation (ft)

g Gravitational Constant (ft/s2) ρ Density of air (lbs/ft3)

Vz Maximum possible rate of climb
(ft/min)

Rturn Minimum aircraft turn radius (ft)

D̂turn Distance traveled per degree of turn
(ft/deg)

T̂lost Surveillance time lost per degree of
turn (s/deg)

T̂lost = D̂turn

Vturn
(24)

where the variable definitions in the above models are given in Table 4.

4.2 Optimization results and discussion

Using the models described in Eqs. (8)–(24) and the information in Table 3, a prob-
lem of the form of P2 was created and implemented in Matlab using the FMIN-
CON function—a constrained nonlinear optimization solver. Design object limits and

χ
(k(t))
i,i values implemented in this example for each concept and time-step are sum-

marized in Appendix A. The resulting s-Pareto frontier at each time-step is shown in
Fig. 3.

From Fig. 3 it can be observed that the s-Pareto frontier changes over time as
anticipated. As described in Sect. 1, the purpose of obtaining these optimal designs
within each time-step is to enable better decisions to be made in the present (t = 1).
One such decision that is required is to determine what type of aircraft will be created
to account for the identified changes. Some available options would include: (i) a sin-
gle non-modular/non-adjustable aircraft designed to operate in every scenario; (ii) a
series of related aircraft designs that build on common platforms (product family);
(iii) a reconfigurable/adjustable aircraft; or (iv) a modular aircraft that adapts to dif-
ferent scenarios through the addition or subtraction of modules. Recognizing that
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Fig. 3 Representation of s-Pareto frontier obtained for each time step using Matlab, and aircraft Concept
2 designs (	, �, ∇ , and ©) selected using four different aggregate approaches

options (ii)–(iv) require additional design methods and considerations, for this ex-
ample option (i) was selected. In addition, Concept 2 was selected as the preferred
concept since it appears in each time-step, and has a more moderate trade-off between
W and P .

In order to select a single aircraft design for Concept 2 (k = 2), four different
aggregate approaches were implemented. In each case, the dynamic formulation (of
the form of P2) used to obtain the dynamic s-Pareto frontiers shown in Fig. 3 was
adapted by replacing Eq. (2) in P2 with the following:

min
ŷ(k)

{
J
(
μ(k(1)),μ(k(2)), . . . ,μ(k(nt ))

)}
(25)

where ŷ(k) is a vector composed of all common independent design objects (y(k(1)) ∪
y(k(2)) ∪ · · · ∪ y(k(nt ))) for the k-th design concept; and J is an aggregate objective
function that combines the objective values at each time-step into a single value.
Note that the formulation of J provided in Eq. (25) is generic. Specific formulations
of J implemented in this example are provided in Eqs. (26), (27), (29), and (30).

The first aggregate approach used is assumed to be similar to that of the C-130,
where the aircraft design was selected based on the specific requirements at one ini-
tial time. In this case, the aggregate objective function was a weighted sum of the
objective values at t = 1 where the objective weights for P (wP ) and W (wW ) were
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both 0.5. Selecting a design from the previously identified s-Pareto designs at t = 1,
the resulting performance at each time-step is represented in Fig. 3 by the symbol
“	”. It should be observed that the design selected at t = 1 is on the s-Pareto fron-
tier. However, the performance of this design at the other time-steps (t = 2 and 3) is
highly non-optimal due to the distance/offset of the selected design from the dynamic
s-Pareto frontier. The implemented formulation of J for this approach is presented as
Eq. (26) with k = 2 and t = 1.

J = wP · P (k(t)) + wW · W(k(t)) (26)

The second aggregate approach used was to combine all objective values of a de-
sign at each time-step using a Substitute Objective Function (Cheng and Li 1996;
Messac 2000) (multiplies the normalized objective values for all t together). The re-
sulting design for this approach is represented in Fig. 3 by the symbol “�”. Once
again, it is observed that the design selected at t = 1 appears to be on the s-Pareto
frontier, but the performance of this design at the other time-steps is even more non-
optimal than for the first approach. The implemented formulation of J for this ap-
proach is presented as Eq. (27) with k = 2. Note that μ

(t)∗
max/min,j are the max/min

objective values of the identified points along the dynamic s-Pareto frontier at each
time-step.

J =
3∏

t=1

( n
(t)
μ∏

j=1

(
μ

(t)∗
max,j − μ

(k(t))
j

μ
(t)∗
max,j − μ

(t)∗
min,j

))
(27)

where:

μ(k(t)) =
{

{P (k(t)),W(k(t)), T̂
(k(t))
lost }, for t = 3

{P (k(t)),W(k(t))}, else
(28)

The third aggregate approach combined all objective values of a design at each
time-step using a weighted sum. The weights used to scale the values of P (w(t)

P ) at

each time-step were 0.5. The weights used to scale the values of W (w(t)
W ) at each

time-step were 0.5, 0.5, and 0.3 respectively. The weight used to scale the value of
T̂lost (w

T̂lost
) for t = 3 was 0.2. The resulting design for this approach is represented

in Fig. 3 by the symbol “∇”. Again, it is observed that the design selected at t = 1
appears to be on the s-Pareto frontier. However, the performance of this design at the
other time-steps, although still highly non-optimal, is closer to the s-Pareto frontier
than for the first two approaches. The implemented formulation of J for this approach
is presented as Eq. (29) with k = 2.

J =
3∑

t=1

{
w

(t)
P · P (k(t)) + w

(t)
W · W(k(t)) + w

T̂lost
· T̂ (k(t))

lost , for t = 3

w
(t)
P · P (k(t)) + w

(t)
W · W(k(t)), else

(29)

Note that for each of these three approaches, the design comparisons are focused
around the distance/offset of these designs from the identified s-Pareto frontiers, and
not simply the objective values, at each time-step. As such, a noted value of using the
dynamic s-Pareto formulation is the ability to seek designs that minimize the offset
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Table 5 Summary of the
aircraft design offsets from the
nearest s-Pareto point to the
designs selected at each
time-step using the four
aggregate approaches (	, �, ∇ ,
and ©) shown in Fig. 3

t Aggregate 1 Aggregate 2 Aggregate 3 Aggregate 4

Offsets Offsets Offsets Offsets

1 0 0.08 0.65 0.03

2 22.89 23.55 19.66 11.28

3 22.83 23.47 19.58 11.29

from the dynamic s-Pareto frontier at each time-step. With this in mind, the final
aggregate approach combined the offset of a given design at each time-step using a
weighted sum. The weights (ŵ(t)) used to scale the offset value at each time-step that
resulted in the lowest offsets for t = 2 and 3 were 0.1, 0.75, and 0.15 respectively.
The resulting design for this approach is represented in Fig. 3 by the symbol “©”.
Note that the design selected at t = 1 appears to be on the s-Pareto frontier, and that
the offsets of the selected design from the s-Pareto frontier for the remaining time-
steps is significantly improved. The implemented formulation of J for this approach
is presented as Eq. (30) with k = 2.

J =
3∑

t=1

ŵ(t) · min
(∥∥μ(k(t))∗

v − μ(k(t))
∥∥∀v ∈ {

1, . . . , n(t)
p

})
(30)

where μ(k(t)) is defined in Eq. (28); μ
(t)∗
v are vectors of the identified points along the

dynamic s-Pareto frontier at each time-step; and n
(t)
p is the number of μ(t)∗ at each

time-step.
It should be noted that the third aggregate approach is capable of selecting the

same design as the offset approach (Aggregate 4). However, in order to maintain
consistency with the weights used in Aggregate 1, this solution was not shown in
Fig. 3. In addition, it is observed that the selected design for Aggregate 4 at t = 1 is
at the limits of the s-Pareto points corresponding to Concept 2. Due to this, and the
weights of Aggregate 4 required to minimize the design offsets for t = 2 and 3, it was
concluded that the design requirements for t = 1 are what limits the design offset in
the other scenarios. This is because the optimal aircraft design at t = 1 is a heavier
weight aircraft than is needed in the other time-steps. As such, this is the main factor
for causing offsets from the Pareto frontier for t = 2 and 3.

To summarize the results of the four aggregate approaches described above, Ta-
ble 5 presents the offset of each approach. By comparing the information presented in
Table 5 for each Aggregate Approach, the advantage of using the design offset (fourth
aggregate approach) is observed. Specifically, by minimizing the design offset as in
the fourth aggregate approach, there was approximately 60 % improvement over a
traditional weighted sum aggregate function (third aggregate approach) that resulted
in the next best selected alternative.

An additional example implementation of the presented dynamic formulation in
the development of a 3/4 ton utility cart for developing nations is provided in Lewis
(2012). This example describes early-stage design decisions, information gained by
testing multiple prototypes, use of the problem formulation presented in this paper to
understand future impacts of design decisions, and final field testing as a comparison
to the optimization results. The utility cart example also indicates that the presented
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problem formulation is a useful design tool to explore the future impact of design
decisions.

5 Concluding remarks

In response to the question of how the resolution of conflicts changes over time,
this paper presented the idea of dynamic s-Pareto frontiers and preferences. Specifi-
cally, changes in both the preferences that dictate design selection, and changes in the
s-Pareto frontier over time through the use of a dynamic MOP formulation was ex-
plored. The presented dynamic formulation provides a quick and efficient framework
to identify the dynamic s-Pareto frontier for a selected series of scenarios/time-steps.

The application of the presented dynamic MOP formulation, and the ability to
use the resulting dynamic s-Pareto frontier to guide/improve design decisions, was
illustrated through a simple aircraft example for three different time-steps. Through
the presented example, the simplified ability to explore a changing design space and
identify the resulting dynamic s-Pareto frontier by using the dynamic s-Pareto formu-
lation is demonstrated. In addition, the ability to use the identified dynamic s-Pareto
frontier to evaluate design selections based on the offset from the frontier and thus
improve design decisions is also shown. Specifically, by minimizing the aircraft de-
sign offset, the selected aircraft design offset was improved by an average of roughly
60 % from a traditional weighted sum aggregate function that resulted in the next best
selected alternative.

It is observed that the use of the presented formulation can improve the ability to
observe/measure the impact of design decisions on the performance of a design over
time due to known changes. In considering the use of the presented formulation, it
should be noted that the formulation is limited to situations where the changes that
will occur over time can be predicted with reasonable accuracy. As such, application
would be limited in fast paced industries where new technologies or materials are de-
veloped quickly. However, if the technology/material improvements can be predicted,
then the presented formulation could be used to look beyond the current design sce-
nario. Specifically, products could be designed to better interface with or anticipate
new technologies before they are fully developed.

Acknowledgements Funding for this research was provided by the National Science Foundation Grant
0954580.

Appendix A: Dynamic s-Pareto formulation inputs

For the aircraft example given in this paper there are three concepts. The variable val-
ues for these different concepts are presented in Tables 6, 7 and 8, and were selected
using data provided in Heintz (2002) for various aircraft and wing configurations. The
units and descriptions of these variables are given in Table 4. The rows of the tables at
each time-step are the values of the diagonal matrix (w(k(t))) and design object limits

(x(k(t))
l , x

(k(t))
u ) for the corresponding concept. For example, the rows corresponding

to χi,i , xl , and xu for Concept 1 at t = 1 represent the χ
(1(1))
i,i values of Eq. (5), x

(1(1))
l

values of Eq. (3), and x
(1(1))
u values of Eq. (3), respectively.
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