
Struct Multidisc Optim (2010) 41:1–15
DOI 10.1007/s00158-009-0410-4

RESEARCH PAPER

Optimization of near-constant force springs subject
to mating uncertainty

John C. Meaders · Christopher A. Mattson

Received: 9 January 2008 / Revised: 27 May 2009 / Accepted: 11 June 2009 / Published online: 11 July 2009
© Springer-Verlag 2009

Abstract Constant force mechanisms are mechanical
devices that provide a near-constant output force over
a sizable and prescribed deflection range. These mech-
anisms have proven to be innovative solutions in a
variety of applications. This paper considers a new
application – the robust design optimization of con-
stant force electrical contacts. Electrical contacts are
inexpensive, small-scale, springs that carry electrical
current. To produce these contacts at competitively low
manufacturing costs, expensive pin-joints (a principle
component of traditional kinematic mechanisms) are
replaced by simple cam followers. Under certain con-
ditions, enforced in this paper, cam followers can be
used to emulate traditional pin-joints, and achieve the
necessary motion. These emulated pin-joints, however,
are subject to mating/assembly uncertainties that affect
performance and must be considered in the design. In
this paper, a numerical optimization model is used to
characterize the force-deflection relationships for both
an exactly mated emulated pin-joint, and for one that is
subject to mating uncertainties. The numerical results
show that under the exact mating conditions, a contact
with 97.50% constant force can be identified (an im-
provement of 24.3% over previously published results),
albeit sensitive to mating uncertainty. When conditions
are considered uncertain, a more robust design is found
with a 98.20% constant force. These surprising results
are described in detail and verified with Monte Carlo
simulation to confirm the results.
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Nomenclature

αc Smallest angle between the cam link and the
preceding element before deformation

γc Smallest angle between the cam link and the
preceding element after deformation

αi Smallest angle between the i-th element and the
i + 1 element

βmax Maximum transmission angle that the optimiza-
tion search allows between the cam and the
preceding element

C Percent constant force
� Total deflection (prescribed)
δp Preload deflection
δ An increment of the total prescribed deflection

�

dij Minimum distance between the i-th element and
the jth element

F Output force
�x Size of the design domain in x direction
�y Size of the design domain in y direction
Li Length of the i-th element
N Safety Factor on Stress
nn Number of nodes
ne Number of elements
p Vector of designer specified parameters
ψ Minimum angle allowed between the cam link

and the vertical and horizontal positions
θc Angle of the cam link as measured from the

horizontal
Ri Distance from the i-th node to the cam center
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rc Radius of the cam
σmax Maximum Bending Stress
x Vector of nodal coordinates in x direction
y Vector of nodal coordinates in y direction
Ys Yield Strength

1 Introduction

From time to time, designs would benefit from having
springs that exhibit a near-constant output force over
a sizable, and prescribed, displacement range. These
springs, whose force-displacement curves are notably
different than linear springs, are referred to as constant
force springs (Weight et al. 2007).

The constant force springs considered in this paper
are derived from a broader class of constant force de-
vices characterized as constant force kinematic mecha-
nisms, which are modelled using traditional kinematic
analysis (Howell 2001; Nahar and Sugar 2003; Evans
and Howell 1999; Howell and Magleby 2006). While
the constant force springs presented in this paper are
kinematic mechanisms, they do not possess revolute
joints (pin-joints). Instead, the necessary motion is ob-
tained by (i) the large deflection of the spring’s sections,
and (ii) by simple cam followers, which can emulate
the motion of a revolute-joint. These cam followers
are described shortly, and are hereafter referred to as
emulated pin-joints.

In this paper we present the design optimization
of constant-force springs with emulated pin-joints and
with consideration of uncertainty in the emulated pin-
joint mating conditions. We specifically focus on the de-
sign of small scale (roughly 6 mm tall), mass produced
electrical contacts, the basic architecture of which is
shown in Fig. 1. The purpose of the electrical contact
is to provide a reliable and separable electrical con-
nection between two electrical devices. The constant
force contact is designed to carry out that purpose with
minimal variation in output force, which is a promising
solution to common signal-integrity-difficulties encoun-
tered in separable electrical interconnections (Weight
et al. 2007).

As illustrated in Fig. 1, the constant force contact
assembly comprises (i) a plastic housing, and (ii) a
metallic beam that is fixed at one end to the hous-
ing and makes contact with a plastic cam surface on
the other. When the electrical connection is made, a
device to which the connector mates applies a large
displacement (labeled Input Deflection) to a point on
the beam. This creates a reaction force (labeled Output
Force) which is designed to be relatively constant over
a large displacement range. The actual magnitude of

Input

Deflection

Output

Force Fixed End

Plastic

Housing

Metallic

Spring

Fig. 1 Basic architecture of the compliant constant force electri-
cal contact

displacement depends on several case-specific factors
including the geometry and stiffness of both devices.

To produce these contacts at competitively low man-
ufacturing costs, emulated pin-joints have been used
in place of more expensive pin-joints. Under certain
conditions, enforced in this paper, cam followers can
be used to emulate traditional pin-joints, and achieve
the necessary kinematics. Figure 2 illustrates the de-
finition of an emulated pin-joint. As shown in the
figure, the emulated pin-joint is located at the point
where the metallic beam contacts the circular plastic
cam. This connection, if maintained in compression,
simulates a traditional pin-joint between the metallic
beam and an imaginary rigid link connected to the cam
center and having a length equal to the cam radius,
rc. These emulated joints, however, are subject to mat-
ing/assembly uncertainties that can significantly change
the percent constant a mechanism’s output force is, if
not considered and handled explicitly. While extensive
work has been done to predict the effect of uncertainty
in traditional pin-joints (Garrett and Hall 1969; Choi
et al. 1998) (by considering joint clearances), alterna-
tive models are needed that consider large mating gaps
and large interferences between the compliant metal
spring and the plastic cam.

As described in this paper, we seek robust designs
that (i) exhibit a high constant force percentage, and
(ii) are insensitive to mating/assembly uncertainties.
Formally, a robust design can be defined as one whose
performance remains relatively unchanged and feasi-
ble in the presence of uncertainty (Chen et al. 2000).
Optimization-based robust design approaches seek to
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Fig. 2 Side view of basic
constant force contact
architecture; (a) Emulated
pin-joint between beam and
cam. (b) traditional pin-joint
between beam and cam

optimize the mean performance and minimize its vari-
ation, while maintaining feasibility with probabilistic
constraints (Taguchi 1986; DeVor et al. 1992; Koch
2002). The approach originates from Taguchi’s theories
on handling uncertainty in practice (Taguchi 1986).
Noted work in this area includes Parkinson et al. (1993),
and Chen et al. (1999, 2000). Su and Renaud (1997)
provide an extensive review of the optimization-based
robust design literature.

This paper presents a new design optimization ap-
proach for constant force springs. The approach can in-
corporate the uncertain nature of emulated pin-joints.
Deterministic and robust design results are presented
and compared to deterministic results published by
Weight et al. (2007). As shown, the design approach
presented here yields significant improvement over the
previous study (Weight et al. 2007).

2 Technical preliminaries

Various developments have been made for the general
modeling and design of constant force mechanisms

(Jenuwine and Midha 1994; Herder and van den Berg
2000; Nathan 1985). Among the most useful develop-
ments is the Pseudo Rigid Body Model (PRBM); a
method for designing compliant constant force mecha-
nisms (Howell 2001). Compliant mechanisms gain some
or all of their motion from the large deflection of
flexible members as opposed to movement of rigid
links connected by pin-joints. The PRBM is used to
analyze compliant mechanisms as rigid-body mecha-
nisms, thereby significantly reducing the complexity of
analysis (Howell 2001; Evans and Howell 1999; Howell
and Magleby 2006; Weight 2001).

One of the most common approaches for modeling
a constant force mechanism is as a traditional slider
crank mechanism with torsional springs at some or all
of the joints (Murphy et al. 1996; Weight et al. 2002;
Frischknecht et al. 2004). Such a mechanism is shown in
Fig. 3a. The constant force behavior of this mechanism
is due primarily to (i) the decreasing force transmission
angle, from greater than π/2 to π/2, between the two
long links in the figure, and (ii) the increasing spring
force as the torsional spring deflects. To design constant
force mechanisms based on this model, a designer must

Fig. 3 (a) Compression-type constant force mechanism with rigid links and torsional springs at pin-joints. (b) One configuration of a
compliant constant force mechanism with flexible and rigid links
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select geometry, and torsional spring constants that
balance the decreasing transmission angle and the in-
creasing spring force (Parkinson et al. 1997). Figure 3b
shows a compliant constant force mechanism. Here, the
decreasing transmission angle must be balanced with
increasing strain energy in the flexible link in order to
achieve constant force behavior.

In a previous publication, we presented a constant
force electrical contact that was based on the slider
crank model and was identified using a deterministic
optimization approach (Weight et al. 2007). We dis-
cussed the challenges with using the slider crank model
to represent the compliant electrical contact, and pre-
sented solutions to overcome them. These challenges
were largely related to using emulated pin-joints in
place of traditional pin-joints. The problems identified
included avoiding inflection points, tension at the em-
ulated joint, friction, and deflection beyond a tangent
point on the cam. The developments in the publication
(Weight et al. 2007) did not include a discussion on, or
remedy to, handling uncertainty associated with emu-
lated pin-joint assembly and mating, which is the key
component of the present paper.

As part of the study by Weight et al., a proof-of-
concept prototype was manufactured and tested. The
prototype is shown in Fig. 4. After an initial preload
of 0.15 mm (20% of the total deflection), the proto-
type was 71.89% constant over the remaining 0.60 mm.
Importantly, the prototype performed as predicted by
the optimization routine, which was only able to find a
design that was 73.20% constant. One of the most im-
portant observations made during the testing of these
prototypes was that the performance of the samples was
highly sensitive to mating conditions between the metal
contact and the plastic cam.

In the present paper, we describe a new geometric
layout (still based on the slider crank model) for the
constant force contact and present a new optimization
problem statement that (i) optimizes the percentage

of constant output force, above that which was found
in our previous work, and (ii) includes the effect of
uncertainty, to the extent that the results presented in
this paper have less variation in output force compared
to previous work (Weight et al. 2007).

3 Constant force spring model and optimization

In this section we present a strategy and associated
models for the design and optimization of small scale
(roughly 6 by 6 mm) compliant constant force springs.
We make the reasonable assumption that constant
force springs can be modeled two dimensionally, with
a prescribed and constant out-of-plane depth. We also
assume that the constant force spring is formed from
initially straight stock material through common manu-
facturing methods such as progressive-die forming. Our
design strategy, therefore, is to execute an optimiza-
tion search for two-dimensional spring shapes that can
be formed in a progressive die and that exhibit con-
stant force behavior. The variables in the optimization
search are the nodal locations of principle bends in
the spring geometry, (xi, yi), the location of the cam
center, (xc, yc), and the cam radius, rc. The following
sections define the design domain, mating uncertainty,
the constant force spring model, and deterministic and
robust design optimization formulations for compliant
constant force springs.

3.1 Design domain model

Figure 5 depicts the design domain – the shaded space
within which the optimization searches for desirable
contact shapes (dimensions: �x by �y). The geometry
of the contact is represented by straight beam elements
(shown as dashed lines) connected at nodes (xi, yi) as
shown in the figure. A clamped condition is imposed at
point (xo, yo), where the spring is fixed to the plastic

Fig. 4 Prototype resulting
from the study by
Weight et al. (2007)
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Fig. 5 Design domain and associated variables and parameters

housing. The geometry of the cam is depicted as a rigid
kinematic link extending from the cam center (xc, yc) to
the free end of the formed spring. Under the determin-
istic model, the free end of the cam link and the free
end of the beam are constrained to occupy the same
location; in other words, two nodes in the finite element
model occupy the same spatial location. Additionally,
with the no restriction on relative rotation between the
cam link and the beam, these conditions characterize a
kinematic pin-joint. All nodes, except the cam center
(xc, yc), are constrained to be within the shaded design
domain. Importantly, we note that allowing the cam
center location (xc, yc) to be outside the shaded design
domain brings additional freedom not present in pre-
vious work (Weight et al. 2007). Since the cam link is
solely used in simulation (i.e., not manufactured), only
the portion of the cam that contacts the spring from
initial to final displacement is restricted to the design
domain.

Figure 5 also shows a prescribed deflection (�) ap-
plied to a point (xa, ya) on the spring, and a reaction
force (P), which is determined in the vertical direction.
While the point (xa, ya) is subject to a prescribed
deflection in the vertical direction, it is not constrained
in the horizontal direction. The total number of nodes
(nn) and elements (ne) in the design is chosen according
to the desired resolution of the finite element model.

Unlike the geometric model from our earlier work
(Weight et al. 2007), the present design domain model
uses the Cartesian coordinates of each node (xi, yi)
as variables for the design optimization. Because the
nodal coordinates are permitted to be anywhere within
the design domain, the optimization has nearly com-

plete freedom to search for spring shapes that provide
constant reactionary forces over large displacement
ranges.

Figure 5 also illustrates variables that are used to for-
mulate behaviorial constraints that ensure that the re-
sulting design will be both manufacturable, and within
the predictive capabilities of the emulated pin-joint
model. Specifically, we define the angle between two
adjacent elements (αi), the length of each element (Li),
the distance from each node to the cam center (Ri), the
angle between the cam link and the preceding element
(αc), and the angle (θc) of the cam link as measured
from the horizontal. Each of these quantities is de-
pendent on the nodal locations, which are independent
variables. The behaviorial constraints that rely on these
dependent variables are described shortly.

3.1.1 Geometric uncertainty model

When, at an undeflected spring state, it is assumed that
the end of the spring is in perfect contact with the cam
(i.e., no mating gap, and no strain in the spring), the
search for desirable spring shapes can be carried out in
a deterministic way. However, when the more realistic
condition of mating gaps or initial strain in the spring
is considered, a non-deterministic approach is needed.
This section describes the geometric uncertainty model
used to capture these non-deterministic effects.

The geometric uncertainty model presented here
includes two sources of uncertainty. One source of un-
certainty arises from manufacturing variations in spring
shape, and by variations in other parameters such as
material properties. The other source of uncertainty
arises from imperfect mating conditions in the em-
ulated pin-joint. To characterize the robustness of a
particular design with respect to variation in manufac-
turing variables and other parameters we use a Monte
Carlo simulation to create a population of contacts with
normally distributed values for the spring’s nodal loca-
tions. For each spring in the population, the percentage
of constant force is determined. The standard deviation
of the constant force percentages across the population
determines the degree to which a design is robust.

Considering the second source of uncertainty, there
are several different mating conditions that may be ex-
perienced between the assembled parts (metallic beam
and plastic cam). Possible mating scenarios are illus-
trated in Fig. 6. The first case (Fig. 6a) is an ideal case
where the beam and the cam mate exactly as designed –
inducing no strain and leaving no gap. In this case,
a deterministic search is sufficient. The second case
(Fig. 6b) occurs when the cam is manufactured with a
smaller radius than the design target. This results in a
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Fig. 6 Significant geometric uncertainties for emulated pin-joints. (a) Ideal case, (b) Cam radius too small, (c) Cam radius too big,
(d) Cam and contact not fully assembled, (e) Cam and contact over assembled

gap between the cam and the beam, and the interaction
between the two will not occur until the deflection of
the beam closes this gap. The third case (Fig. 6c) occurs
when the manufactured cam radius is larger than the
design target. In this case, the cam will deflect the
beam during assembly, induce strain in the spring, and
cause the spring behave differently than expected. The
fourth (Fig. 6d) and fifth (Fig. 6e) cases both involve
variations in cam placement. For both cases, the cam
and beam geometry are exact, however in Case 4 the
contact is not fully assembled to the cam, which results
in a gap. In Case 5, the contact is over assembled which
causes the cam to deflect the spring during assembly –
leaving a residual strain in the spring. All mating cases
can be categorized into three basic conditions: an exact
mating, a mating gap, or a mating interference.

To include the basic mating conditions in our analy-
sis, we enhance the design domain model described
above to include contact mechanics. For a constant
force spring that has a gap between the spring and
the cam, we enhance the design domain model by (i)
removing the condition that the end of cam link and
the end of beam occupy same location, and (ii) allowing
the free end of the beam to move unconstrained until
it contacts the cam surface. At each step of the multi-
step load analysis, the size of the gap is tested to see
if contact is made. When contact is made the pin-joint
conditions are reactivated, meaning that the end of cam
link and the end of beam are constrained to occupy
same location, yet the links are free to rotate with
respect to each other.

For a constant force spring that experiences a spa-
tial interference between the spring and the cam, we
enhance the design domain model by determining
the deflection and stresses that are created by the
interference – before applying the operational deflec-
tion. We do this by starting the cam in a position
where the interference is removed and then applying
several displacement steps to the cam center to move
the cam back to its original position. This deflects the

compliant member as if it was being assembled into the
plastic housing. We use this deflected position and the
corresponding residual stresses as our initial condition
when we apply the total deflection.

Before discussing the methods used to determine
the deflections and stresses in the designed spring, we
pause to preview how these mating conditions are con-
sidered in the robust design optimization formulation
described in Section 3.4. For each candidate design
evaluated during the optimization search, the constant
force characteristics of the design are examined for
the nominal geometry, and for interference-generating
geometry, and gap-generating geometry. These inter-
ference and gap generating geometries are invoked
during the robust design optimization procedure. Ad-
ditionally, a Monte Carlo simulation is performed on
the final designs. In that simulation, thousands of inter-
ference and gap generating geometries are considered
to evaluate the final design.

3.2 Modeling force-displacement and bending
stress relationships

We use a finite element method to determine the force-
deflection relationship of the spring, and to determine
the internal stresses caused by the deflection. The
overall spring geometry is modeled using a number
of beam elements and the Timoshenko beam theory.
This theory provides more accurate results than the
Euler theory in beams with low length to thickness
ratios. Since the length of each beam, and thus the
length to thickness ratio, is decided by the optimizer,
the Timoshenko beam theory is used to provide more
accurate results.

The metallic spring undergoes large non-linear de-
flections. Therefore, nonlinear methods are used to
solve the beam equations for nodal displacements.
The non-linear finite element process, used in this
paper, follows the procedures developed by Bhatti
(2006). Bhatti suggests three main steps and the use of
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Newton-Raphson approaches for solving the set of non-
linear equations. Step 1 is to form the global tangent
stiffness matrix, the load vector, and the internal force
vector through element assembly. Step 2 is to solve the
system of equations for a small load step. Finally, Step 3
updates the nodal locations. Steps 1–3 are executed for
each step of a multi-step load analysis.

We use a Newton-Raphson iteration method to con-
verge on a nodal solution after providing an initial
estimate of nodal displacements. The internal stresses
and the reaction forces are calculated directly from
the beam equations once the solution is known. One
difficulty with the Newton-Raphson iteration is that it
can diverge if the initial estimate is too far from the
solution. To prevent this we apply the total deflection
(�) to the contact in many small increments (δ).

These displacement increments, and the correspond-
ing output forces, become data points for constructing
the force-deflection curve. The force-deflection curves
of constant-force contacts typically have a region where
the force increases steeply with increasing deflection
followed by a nearly flat region. A typical curve is
shown in Fig. 7. As seen in the figure, a small preload
is applied to avoid the region of steep force increase.
This preload deflects the spring beyond the region of in-
creasing force, so that the deflections that occur during
operation are in the flat region. When determining the
level of constant force for the contact we consider only
the variation in force over the operational displace-
ment range. Being consistent with previous literature
(Weight et al. 2007; Howell 2001), the level or percent-

age of constant force is related to the maximum and
minimum forces in that range by (1)

C = 100
Fmin

Fmax
(1)

To avoid plastic deformation, the internal stresses
must be determined. As the Newton-Raphson proce-
dure is iterated the bending, axial, and shear stresses
are estimated using the two dimensional beam equa-
tions. In this paper, however, we consider only the
bending stress, as it is dominant. Failure is determined
by comparing the bending stress to the material yield
strength.

This section has presented the models used to char-
acterize the performance of the constant force contact
and the performance uncertainty due to variations in
nodal locations and cam/beam mating (see Section 3.1).
The following two sections use these models in opti-
mization problems to identify contact geometry that
results in constant force contacts.

3.3 Deterministic optimization formulation

In this section we present the deterministic optimiza-
tion problem statement used to find optimal spring
geometry that produces a constant force over a large
prescribed deflection range. The constraints developed
in this section are also used in the robust design opti-
mization problem statement of Section 3.4, but will be

Fig. 7 Generic force-
displacement curve for
constant force device
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altered to ensure that uncertain conditions do not lead
to violated constraints.

Problem 1 Deterministic design optimization of the
compliant constant force springs

min
x,y

J1 =
∫ �

δp

(F − Fave)
2 dδ (2)

subject to

FL ≤ Fave ≤ FU (3)

dij > 0 (i, j = 1, 2, ..., ne, j > i + 1) (4)

αi ≥ αmin (i = 1, 2, ..., ne − 1) (5)

Li ≥ Lmin (i = 1, 2, ..., ne) (6)

αc ≤ βmax (7)

γc ≥ π

2
(8)

π

2
− ψ ≥ θc ≥ ψ (9)

Ri ≥ rc (i = 1, 2, ..., nn − 2) (10)

rmax ≥ rc (11)

σmax ≤ Ys

N
(12)

0 ≤ xi ≤ �x (i = 1, 2, ..., nn − 1) (13)

0 ≤ yi ≤ �y (i = 1, 2, ..., nn − 1) (14)

where δp is the preload displacement, � is the total
displacement, and Fave is the average output force
over the operational displacement range (� − δp). The
set of designer specified design parameters for this
problem are listed in Table 1; and designer specified
constraint limits are defined in Table 2. As seen by
(2), the objective of this optimization problem is to
minimize the difference in output force over a range
of displacements, which maximizes the constant force
percentage expressed in (1). A graphical representation
of the objective function is presented in Fig. 8a. This
figure shows a force-displacement plot and it’s average
force (dashed horizontal line) as evaluated over the
operational displacement range. The objective function
seeks to minimize the shaded area between the function
F and Fave. Equation (3) keeps the maximum output
force below an upper limit and the minimum output
force above a lower limit, for the forces encountered

Table 1 Parameter description for deterministic optimization

Parameter Description

xo x coordinate of fixed point
yo y coordinate of fixed point
xa x coordinate of point where force is applied
ya y coordinate of point where force is applied
n Number of nodes
E Young’s modulus
ν Poisson’s ratio
b Cross section width
h Cross section height
� Total deflection range including preload

in the operational displacement range. Equation (4) is
included in the problem statement to keep the string
of elements from crossing over itself. We do this by
constraining the minimum distance (dij) between any
two non-adjacent elements to be greater than zero.
Equations (5) and (6) limit the angle between adja-
cent elements and restricts the minimum length of the
elements, respectively. These constraints are included
in the statement to keep the search for constant force
mechanisms practical from a manufacturing perspec-
tive. Equations (7) and (9) keep the cam link angles
within the capabilities of the emulated pin-joint model,
and (8) and (10) keep the nodes and elements of the
contact from passing through the cam surface or trying
to occupy any space where the cam physically exists.
Stress is maintained under control by (12). Finally, the
nodal locations, which are completely free to move
during the optimization search, are required to stay
within the design domain as specified by (13) and (14).
Again, we note that the cam center, however, is allowed
to move outside of the design domain. Notice when
the indices used to define the constraints in (4)–(6),
(10), (13), and (14), are expanded for a 17 element

Table 2 Constraint limit descriptions

Parameter Description

�x x dimension of design domain
�y y dimension of design domain
rmax Maximum allowable cam radius
αmin Min. allowable angle between adjacent elements
Lmin Minimum allowable element length
γmax Smallest angle between cam link and

preceding element after deformation
FL Minimum allowable output force
FU Maximum allowable output force
βmax Maximum allowable transmission angle

between cam and the preceding element
ψ Minimum allowable angle cam link

and vertical and horizontal positions
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Fig. 8 (a) Area between the force-deflection plot and the aver-
age force is minimized over the operational displacement range,
thereby maximizing the constant force percentage. (b) Volume

between the force surface and the average force is minimized,
thereby maximizing the constant force percentage over a range
of mating conditions

constant force spring (ne = 17), there are a total of 209
constraints.

3.4 Robust design optimization formulation

The optimization problem formulation presented in
this section is used to search for optimal contact geom-
etry that produces a near-constant force over the oper-
ational displacement range and decreases variation of
that force given manufacturing related uncertainties.

Problem 2 Robust design optimization of the compli-
ant constant force contact

min
x,y

J2 =
∫ mu

ml

∫ �

δp

(F − Fave)
2 dδdm (15)

subject to

FL + F̃i ≤ Fave ≤ FU − F̃i (16)

dij > 0 + d̃ij (i, j = 1, 2, ..., ne, j > i + 1) (17)

αi ≥ αmin + α̃i (i = 1, 2, ..., ne − 1) (18)

Li ≥ Lmin + L̃i (i = 1, 2, ..., ne) (19)

αc ≤ βmax − α̃c (20)

γc ≥ π

2
+ γ̃c (21)

ψ + θ̃c ≤ θc ≤ π

2
− ψ − θ̃c (22)

Ri ≥ rc + R̃i (i = 1, 2, ..., nn − 2) (23)

rmax ≥ rc + r̃c (24)

σmax ≤ Ys

Ñ
(25)

0 + x̃i ≤ xi ≤ �x − x̃i (i = 1, 2, ..., nn − 1) (26)

0 + ỹi ≤ yi ≤ �y − ỹi (i = 1, 2, ..., nn − 1) (27)

where Fave is the average force over the operational dis-
placement range and over the range of possible mating
conditions (ml to mu). The terms ml and mu indicate the
lower and upper mating conditions for the candidate
design, respectively. Importantly, by simple geometric
analysis, the range of mating conditions, and there-
fore ml and mu, can be calculated for any candidate
design.

The objective function for Problem 2 is presented
graphically in Fig. 8b. Here, the force function is shown
as a surface, which is a function of displacement, δ, and
mating condition (meaning quantity of mating inter-
ference or mating gap), m. The average value of that
function over the range of m, and over the operational
displacement range, is shown as a flat surface with
dashed-line borders. The objective function seeks to
minimize the volume between the force function and
the average force. Such an objective function results in
a maximizing of the constant force percentage, and a
minimizing of force variation over a range of mating
conditions.
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As mentioned earlier, it becomes necessary to ad-
just the constraints to ensure that any contact within
our tolerance window does not violate our constraints.
Equations (16) to (27) show the adjusted form of the
deterministic constraint equations. An additional term
has been added to each constraint that reduces the
design space by an amount (shown with a tilde) that
is determined by the variance in each of the con-
strained values. Determining an appropriate value for
tightening the constraints can be difficult due to the
dependence of many constraints on the finite element
analysis. For constraints that depend only on the geom-
etry of the design the constraint can be adjusted directly
since we know what geometry our tolerance window
will permit. For example, we know what limits our
tolerances will allow on element lengths so we can
directly adjust our constraint on the minimum element
length such that no design will violate this constraint
within a tolerance window. For a constraint such as the
maximum allowable stress, however, we do not know
what effect the tolerance window may have on the
stress within the compliant member, since it depends
on the non-linear finite element analysis. In this case we
run a Monte Carlo simulation on a design, prior to op-
timizing, to determine the variance of the constrained
finite element analysis values within our manufacturing
tolerance limits. We then use this information to esti-
mate how much we must adjust the constraint during
the optimization routine. Using this approach we must
check the optimum design to ensure that none of the

original, or unadjusted, constraints is violated through
variation in our design. We also use a Monte Carlo
simulation, outside of the optimization algorithm, to
verify the performance of a sample of contacts within
the tolerance limits of our optimum design.

For both the deterministic and the robust design
approaches we use a sequential quadratic programming
(SQP) optimization routine to find the optimal solu-
tion. While this search method is useful because of
its efficiency in converging on an optimal solution, it
cannot guarantee convergence on a global optimum. In
application, various search methods can be used. As a
note, the objective function is highly nonlinear over the
design space due to the complexity of the geometric
model. A discontinuity can occur if the gap between the
cam and the beam is too large, and no contact is made.
A suitable starting design is necessary that will avoid
such discontinuities.

4 Numerical results

This section presents two examples that demonstrate
the optimization models developed in this paper. We
compare the results of these two examples and highlight
differences in performance and robustness that occur
as a result of the different objective functions. We
also compare our results to the results obtained by
Weight et al. (2007) and observe the improvements
that can be gained by using the design optimization
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Fig. 10 Monte Carlo results for three designs with 1,000 samples each: (a) Benchmark design (b) Deterministic solution (c) Robust
design solution

approach presented in this paper. For a complete com-
parison, the benchmark design, which was designed
using the method presented in Weight et al. (2007), has
been carefully approximated and analyzed using the
approaches of the present paper. The results are shown
in Figs. 9 and 10a. Figure 9 shows the side profile of
the optimized geometry. When compared to the basic
architecture shown in Fig. 1, it can be seen that the
spring portions are metallic and fixed at one end, while
the cam is plastic and makes contact with the free end
of the spring.

4.1 Case 1: deterministic optimization
and robustness check

The first example that we present is the design that
results from the deterministic optimization statement.
In this example we initially keep the assumption that
the spring and the cam will maintain perfect contact.
We then test this design by breaking the assumption
and considering both sources of uncertainty discussed
in Section 3.1 in a Monte Carlo simulation to observe
how sensitive the design is to variation. Table 3 lists the
fixed parameters used for this example. These values
are selected to match the benchmark design (Weight
et al. 2007), and all are in the range that could be
considered when designing a constant-force-electrical
contact for the electronics industry. We note that some
terms described in Problem 2 are not listed in Table 3
(e.g., α̃). This is because they are not fixed values,
but instead vary with each spring geometry considered
during the optimization process.

The resulting design in its undeflected and deflected
state is shown in Fig. 11 with its corresponding force-
deflection curve. The percentage of constant force for
this design is 97.50% – a significant increase over our

previous results Weight et al. (2007), which were re-
ported as 73.2%. For the deterministic case, we at-
tribute the improvement to two key factors: (i) The
modeling approach for spring geometry used herein
significantly, and strategically, opens the design space
to geometries not available in the previous study. It
does this by treating the location of the beam’s principle

Table 3 Fixed parameter values for cases 1 and 2

Parameter Description Value

xo x coordinate of fixed point 4.04 mm
yo y coordinate of fixed point 0.51 mm
xa x coordinate of point where 1.54 mm

force is applied
ya y coordinate of point where 5.81 mm

force is applied
n Number of nodes 18
E Young’s modulus 110 GPa
ν Poisson’s ratio 0.34
b Cross section width 1.00 mm
h Cross section height 0.2 mm
� Total deflection range 0.75 mm

including preload
δp Preload deflection 0.11 mm
N Safety factor on stress 1.0
x̃ Tolerance limit on x 0.03 mm
ỹ Tolerance limit on y 0.03 mm
Ẽ Tolerance limit on E 5.0 GPa
ν̃ Tolerance limit on ν 0.005
b̃ Tolerance limit on b 0.03 mm
h̃ Tolerance limit on h 0.03 mm
r̃c Tolerance limit on rc 0.03 mm
L̃ Constraint shift needed for 0.06 mm

feasibility of L
d̃ Constraint shift needed for 0.06 mm

feasibility of d
R̃ Constraint shift needed for 0.06 mm

feasibility of R
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Fig. 11 Case 1 Deterministic solution: (a) Side view of optimized geometry (nodal representation) with non-exaggerated deflected
shape; (b) Force deflection curve for optimized design

bends as design variables, and by allowing the location
of the cam center to be outside of the design domain
as long as the useful portion of the cam remains in the
design domain. The useful portion of the cam is the
area that contacts the spring over its full displacement.
(ii) The constraints developed in the present study
allow us to treat the location of the beam’s principle
bends as design variables without having the beam cross
over, or wrap around, itself.

We now perform a Monte Carlo simulation on the
design to determine the robustness of the results. In
this simulation we will include uncertainty in all the
design variables, and fixed values that we use for the
finite element model. We also allow the mating con-
dition to change depending on the random values of
the other finite element inputs. For all the uncertain
variables we use a normal distribution with a mean at
the nominal value and a standard deviation equal to
one third of the manufacturing tolerance, as obtained
from industry collaborators, and shown in Table 3 and
Table 4. Figure 10b shows the distribution of constant
force percentages for a sample of 1,000 contacts. The
average percentage for the sample is 94.82% constant
with a standard deviation of 2.46%. The distribution
of this sample is notably different than the distribu-
tion of the benchmark sample. This is explained by
recognizing that an upper limit exists on the possible
performance values for the samples (C = 100%). As

the nominal design performance approaches this limit,
variations from the nominal design take on a skewed
distribution because they cannot physically result in
designs with C > 100%. The next example reduces the
standard deviation by implementing the robust design
optimization.

We now make an important comment regarding the
use of only 1,000 samples in the Monte Carlo simu-
lation used post-optimization to establish robustness.

Table 4 Constraint limit values for cases 1 and 2

Parameter Description Value

�x x dimension of design domain 12 mm
�y y dimension of design domain 6 mm
rmax Maximum allowable cam radius 6 mm
αmin Min. allowable angle between 100 deg

adjacent elements
Lmin Minimum allowable 0.03 mm

Element length
γmax Smallest angle between 175 deg

cam link and preceding
element after deformation

FL Minimum allowable output force 0.30 N
FU Maximum allowable output force 1.00 N
βmax Maximum allowable transmission 175 deg

angle between cam and
the preceding element

ψ Minimum allowable angle cam link 5 deg
and vertical and horizontal positions
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Fig. 12 Average percent
constant (top) and standard
deviation of average percent
constant (bottom) over
10,000 Monte Carlo samples
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For the design of a non-linear spring, such as the one
considered in this paper, the computation time required
to compute the non-linear finite element analysis is
significant. We, therefore, use a small number of Monte
Carlo samples, post optimization, to check the design’s
robustness. We do this, however, only after we have
understood and accepted the error accompanying the
Monte Carlo sample size. For the models used in
this paper a plot of Average Percent Constant versus
Samples used in Monte Carlo Simulation is plotted
in Fig. 12. Also shown in the figure is a plot of the
Standard Deviation as a function of samples in the
Monte Carlo simulation. For both the constant force
percentage (C) and the standard deviation thereof, it
can be seen that 1,000 samples is a reasonable approxi-
mation of the same quantities as obtained with a larger
number of samples.

4.2 Case 2: robust design optimization
and robustness check

We now present an example in which we eliminate the
assumption that the cam and the spring always stay in
contact. We use the same designer specified parameters
as Case 1, but in this case we use the robust design opti-
mization approach as presented in this paper. Note that
with the robust design approach we allow the optimizer
to intentionally design a gap or an interference between
the spring and the cam.

Figure 13 shows the resulting design’s geometry with
the nominal mating condition and the corresponding
force deflection curve. The constant force percentage
for this design is 98.20%. It may seem surprising that
this percentage is higher than the deterministic solu-
tion since we have tightened the constraints and added
two new objectives (CL, CU ) to the formulation. As
noted before, however, we are now allowing the opti-

mizer freedom to design gaps or interference fits in the
mechanism.

A close inspection of Fig. 13 shows that the new
design has an intentional interference fit, and the force
deflection curve has been shifted to the left due to the
initial assembly deflection that results from the interfer-
ence. The interference can be recognized in Fig. 13a by
the intersection of the cam surface and the optimized
geometry. It is important to note that according to the
contact mechanics approach presented in Section 3.1,
springs experiencing an interference are deflected in
the negative deflection direction as if the spring were
being assembled into a housing comprising the cam.
This assembly pushes the spring into a position where
the cam and the spring are in contact but not inter-
fering. This assembly deflection and the corresponding
residual stresses are used as an initial condition when
we apply the total deflection. Since we use the same
operational displacement range, the intentional inter-
ference results in a larger applied preload. This means
that the force must remain constant over a smaller
portion of the entire deflection range, and therefore
more constant-force designs can be found.

After the optimization is complete, we use the same
Monte Carlo simulation that we used in the previous
section to check the robustness of the solution; the
histogram is shown in Fig. 10c. We see from the his-
togram that the designs are clustered within a small
region of variation and that they have a desirable
constant force percentage. The average constant force
percentage is 97.64%, with a standard deviation of
0.76%. We see that the new design improves both
the average percentage and the standard deviation. As
described in the previous paragraph, we attribute the
improvement in average percentage to allowing the
optimizer the freedom to intentionally design gaps or
interference fits in the mechanism. Additionally, we
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Fig. 13 Case 2 Robust design solution: (a) Side view of optimized geometry (nodal representation) with non exaggerated deflected
shape; (b) Force deflection curve for optimized design.

attribute the improvement in robustness to the for-
mulation of the optimization objective function, which
seeks to improve the constant force percentage for the
nominal geometry and seeks to reduce its variation
in the presence of known manufacturing tolerances.
Notice that all previous studies considered only the
nominal geometry case.

Before concluding we must also verify that our ro-
bust design optimization solution does not violate our
constraints when manufactured within our tolerances.
The Monte Carlo simulation used earlier is also used
to evaluate the constraints for a sample of contacts.
The results confirmed that the original, or unadjusted,
constraints are not violated.

5 Concluding remarks

In this paper we have presented a new design strategy
for the design optimization of constant-force electri-
cal contacts, which are small scale springs that con-
duct electricity. This approach presented in this paper
provides more freedom for the optimization than
the model used in previously published work (Weight
et al. 2007) by giving individual nodes complete free-
dom to relocate within the design domain, and by
allowing the optimizer to consider intentional gaps and
interferences in the mating of emulated pin-joints. The
implementation of the improved approach resulted in
a significant increase in percentage of constant force.

Using the previously published approach a determin-
istic design was found with 73.20% constant force, a
value that was increased to 97.50% by using the new
model.

We also presented manufacturing uncertainties that
may be encountered when producing constant-force-
electrical contacts, and explored specific situations that
may alter the mating condition of the contact parts.
To control these situations we developed a new model
of the contact, and formulated a design optimization
problem that not only reduced the variation in per-
formance, but increased the performance to 98.20%
constant force. This was made possible by allowing
the optimizer to intentionally design for gaps and in-
terference fits. It is worth noting that it is completely
possible to design and then manufacture these inten-
tional interferences; many connector systems are pre-
loaded using intentional interferences between mating
parts. This is done by adjusting assembly fixtures so that

Table 5 Comparison of the benchmark, case 1, and case 2 de-
signs, with 1,000 Monte Carlo simulation samples (see Table 6
for results based on 10,000 samples)

Benchmark Case 1 Case 2
(Deterministic) (Robust)

Percent constant 73.20% 97.50% 98.20%
force

Average percent 70.24% 94.82% 97.64%
constant

Standard deviation 1.68% 2.46% 0.76%



Optimization of near-constant force springs subject to mating uncertainty 15

Table 6 Comparison of the benchmark, case 1, and case 2
designs, with 10,000 Monte Carlo simulation samples

Benchmark Case 1 Case 2
(Deterministic) (Robust)

Average percent 70.55% 94.61% 97.38%
constant

Standard deviation 1.90% 2.60% 0.86%

the placement of the spring in relation to the housing
results in desired interference.

A Monte Carlo simulation has verified that the de-
sign identified by the robust design optimization per-
formed as expected. The average percentage constant
force for the robust design is 97.64% with a stan-
dard deviation of 0.76%. This can be compared to
the Monte Carlo results from the deterministic opti-
mization, 94.82% constant with a standard deviation
of 2.46%. Table 5 gives a summary of the comparison
between these three designs using 1,000 samples in
the Monte Carlo simulation, while Table 6 presents
results for 10,000 samples. Table 6 is provided to show
that for the mechanism models presented in this paper,
1,000 samples is a reasonable number of samples to
use, especially when considering the additional com-
putational expense that accompanies the use of more
samples.
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