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Hybrid Bishop-Hill Model for
Elastic-Yield Limited Design
With Non-orthorhombic
Polycrystalline Metals
A method is presented for adapting the classical Bishop-Hill model to the requirements
of elastic=yield-limited design in metals of arbitrary crystallographic texture. The pro-
posed Hybrid Bishop-Hill (HBH) model, which will be applied to ductile FCC metals,
retains the “stress corners” of the polyhedral Bishop-Hill yield surface. However, it
replaces the ‘maximum work criterion’ with a criterion that maximizes the projection of
the applicable local corner stress state onto the macroscopic stress state. This compro-
mise leads to a model that is much more accessible to yield-limited design problems.
Demonstration of performance for the HBH model is presented for an extensive database
for oxygen free electronic copper. The design problem considered is a hole-in-a-plate
configuration of thin sheets loaded in uniaxial tension in arbitrary directions relative to
the principal directions of material orthorhombicity. Results obtained demonstrate that
HBH-based elastic=yield limited design is capable of predicting complex and highly non-
intuitive behaviors, even within standard problems. [DOI: 10.1115/1.4004829]

1 Introduction

Three fundamental and interrelated design parameters affect
yielding in materials; they are (1) part geometry, (2) material
microstructure, and (3) boundary conditions. In typical design
practice, these three types of design parameters lead to specific
stress states, which are then compared with simplified yield criteria
(e.g., von-Mises and Tresca criteria) as a means to predict failure.
Even simpler, in the most practiced sense, the largest stress compo-
nent in a part is compared to a measured yield strength (typically
recovered from the standard uniaxial tensile test). Clearly this sim-
ple yield-limited approach has been used in the past to create great
parts and products [1,2]. However, for any material that is not iso-
tropic and homogenous, these methods rely upon an over simplifi-
cation of the yield surface. Reliance upon this simplified approach
in yield-limited design is partially due to ready-accessible tabu-
lated yield strength data. But its use typically implies negligible
variation of the yield strength with direction in the material.
Extending these data sets to include yield anisotropy can be very
challenging, and has only been attempted in the most highly con-
strained design problems. Ultimately, the readily available minimal
yield data reduces the design engineer’s opportunity to search for
optimal material performance, which can only be done by includ-
ing property anisotropy. This paper presents a new, and accessible
model for the anisotropic yield surface that can be used to consider
first-order anisotropic yield characteristics in design.

The literature provides useful insight into the evaluation and
representation of anisotropic yield surface models [3–5]. Through
adaptations of the Von Mises yield criteria, an empirical represen-
tation of the anisotropic yield surface can be developed. This rep-
resentation, however, typically assumes material orthrombicity,
and requires parameters that can only be found through implemen-
tation of a significant testing program. Several microstructure-
based theories have been offered for the prediction of yielding in
polycrystalline materials, such as the Taylor model [6], the
Bishop-Hill model, [7,8] and various intermediate or hybrid mod-

els [9]. These classical models are focused upon integrating crys-
tallographic texture (preferred distribution of lattice orientations)
into yield predictions. Typically they require the input of a critical
resolved shear stress, in order to properly scale the predictions to
measured yield properties.

It is important to note that under the classical Taylor [6] and
Bishop-Hill [7,8] methodologies, plastic strain states must be
specified in order to evaluate the yield stress. The difficulty is
that, for design problems focused upon initial yielding, the elastic
and plastic components of the total strain are comparable in mag-
nitude and difficult to separate. Thus, the precise condition of
plastic strain at initial yielding is not precisely specified. It follows
that application of these classical microstructure-based theories of
plasticity to initial yielding is a rather imperfect approximation at
best.

The new models presented in this work, called the Hybrid
Bishop-Hill (HBH) model, is closely related to the classical
Bishop-Hill model [7,8] in predicting local stress states and me-
chanical yielding. The HBH model has the advantage, when used
in the context of part design, of greatly expanding the design
space, thus enabling the designer to reach into traditionally unex-
plored areas of performance. Because the computational burden
associated with the full characterization of the five-dimensional
anisotropic yield surface is prohibitive, we develop a reduced rep-
resentation of the yield surface that is much more accessible. Typ-
ically only a small portion of the complete yield surface is
required for part design and the HBH model facilitates rapid
access to the pertinent domain of the yield surface

This paper (1) describes a stress-focused anisotropic yield lim-
ited design approach, incorporating the new HBH model, which
(2) does not require an evaluation of plastic strain (or strain rate)
at yielding, (3) preserves the characteristic of local grain-scale
heterogeneity present in the Taylor and Bishop-Hill models, and
(4) efficiently accesses a realistic portion of the anisotropic yield
surface pertinent to the mechanical design.

The new methodology is applied to an extensive database of
rolled and annealed FCC Cu materials (Oxygen Free Electronic
purity grade). Although these materials exhibit the typical ortho-
rhombic symmetry in their crystallographic textures, considera-
tion is also given to rigid body rotations of the principal axes of
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orthorhombicity, about the rolling plane normal direction. Prop-
erty closures, of the type developed by microstructure-sensitive
design methodology, [10,11] are utilized to describe the breadth
of elastic=yielding performance available within the complete ma-
terial database. Demonstration of the new methodology is focused
upon the common problem of stress concentration about a circular
hole in a plate, loaded under uniaxial tension in arbitrary direc-
tions with respect to the principal material axes. Analytical solu-
tions to the elastic equilibrium equations, provided by Lekhnitskii
[12] are used in the mechanical analysis.

The reminder of this paper is presented as follows. In Sec. 2,
we present the technical preliminaries required to introduce the
new methodology. In Sec. 3, we present the new approach for the
mechanical yield limit design. Section 4 presents the application
of the approach to the hole-in-the-plate design problem.

2 Background

2.1 Property Closure. The simplest form of homogenization
relations, associating the distribution of local states of microstruc-
ture to estimates of the macroscopic (effective) elasticity, require
only volume fraction information on the distribution. Hill-Paul
upper- and lower-bounds [Fullwood 2010] on the stored elastic
strain energy density can be expressed in the following ways:

�eijð�SÞ�1
ijkl�ekl � �eijC

eff
ijkl�ekl � �eij

�Cijkl�ekl

�eijð �CÞ�1
ijkl�ekl � �eijS

eff
ijkl�ekl � �eij

�Sijkl�ekl (1)

Here Ceff and Seff are the fourth-order effective elastic stiffness
and compliance tensors, S and C are the local ones, e is the local
(second-order) infinitesimal strain tensor, r is the Cauchy stress
tensor, and the bar over the top of any of these tensors indicates
the volume average of the same. (Note that the Einstein summa-
tion convention has been used in Eq. (1), in that repeated indices
occurring on the same side of the equation signify summation
from 1 to 3 over that index. Thus, each term in Eq. (1) contains 81
terms. This same convention is applied throughout the paper.)
Similar bounding relations on the effective elastic compliance ten-
sor are also available [11].

Although Eq. (1) rigorously bound the elastic energy density,
bounding of the effective stiffness tensor itself is only convenient
when the indices k, l are set equal to i, j. In this situation the fol-
lowing bounds must be satisfied:

�S�1
ijij � Ceff

ijij � �Cijij

�C�1
ijij � Seff

ijij � �Sijij (2)

Thus, bounds on 9 of the 21 independent effective elastic con-
stants are readily available from simple volume averages over the
corresponding local elastic constants, but more complex relations
are required to bound the remaining terms [10,11]. For our pur-
poses in this paper, we will focus upon the Hill-average elastic
constants, Ceff(Hill) and Seff(Hill), which are defined by the follow-
ing expressions:

C
effðHillÞ
ijkl �

�S�1
ijkl þ �Cijkl

2

S
effðHillÞ
ijkl �

�C�1
ijkl þ �Sijkl

2
(3)

The Hill-average constants are an average of the upper- and
lower-bounds on the effective elastic constants; and the expres-
sions apply to all 21 independent components.

Refinements in the prediction of elastic constants are available
[10,11], but such require additional information on the spatial
placement of local state, in addition to the distribution by volume
fraction. For our purposes the Hill-average estimates will be
sufficient.

2.2 Distribution of Local States. The term local state refers
here to any local characteristic of the material that affects the
property of interest. Local state distribution refers to how the
components of microstructure are distributed upon the set of
possible local states. A common example of a local state distri-
bution function is the familiar orientation distribution function,
used in describing the crystallographic texture of polycrystals
[13]. For the materials of interest in this paper, two types of
local state will be important, but only one will be considered to
vary. Only one material phase is present in oxygen free elec-
tronic (OFE) Cu polycrystals—the FCC Cu phase. Impurity lev-
els in this material are small; and these impurities are typically
dispersed in interstitial form within the dominant phase. It is
assumed that the local elastic state of the material is determined
only by the orientation of the crystal lattice and by the basic
elastic properties of the Cu phase, CCu. If the direction cosines,
g(x), are known at any local position x, then the local elastic
properties are given by the expression

CijklðxÞ ¼ gimðxÞgjnðxÞgkoðxÞglpðxÞCCu
mnop (4)

The sense of the direction cosines in this expression is a coordi-
nate transformation from the h100i crystal axes of the FCC unit
cell, to the selected orthonormal coordinate system in the macro-
scopic or specimen frame. Clearly g(x) varies little when x varies
within an individual grain, but it jumps as x traverses a grain
boundary.

g(x) is the local state variable of principal interest in this paper.
With respect to the Hill-average estimates of effective elastic
properties, given by Eq. (3). Equation (4) can be used as input
into volume averaging, if g(x) is known for a sufficient sampling
of material points x. Current experimental electron backscatter
diffraction (EBSD) techniques [11,14] are very efficient at meas-
uring g(x) for large numbers of material points.

The second local state variable of interest to the present work is
the critical resolved shear stress, sCRSS. This reflects the level of
shear stress that must be present upon any of the {111}h110i slip
systems to cause dislocation slip to occur. It is known that sCRSS is
proportional to the square root of the local total dislocation density,
which typically varies with position x. However, in the present work
sCRSS will be held constant for any specified material condition
within the database. Determination of sCRSS will be discussed later.

Various parameterizations of g(x) are available. Of course the
full 3� 3 matrix of coefficients of the direction cosines, utilized
in Eq. (4), is an important parameterization; however only three
of the nine direction cosines are independent [11,13]. And for
the purposes of defining the range of all possible lattice orienta-
tions, it is convenient to reduce g(x) to three independent varia-
bles. Many choices are possible, but the Bunge Euler angles, /1,
U, /2, are the most common [13]. These define a sequence of
three primitive rotations that are required to bring a sample-fixed
coordinate frame into coincidence with the lattice fixed frame on
h100i. Output of the Bunge Euler angles is common, using estab-
lished image processing applied to EBSD patterns [14]. When
symmetry of the FCC crystal lattice is fully considered, it is con-
venient to express a threefold redundant space of possibilities for
/1, U, /2 [11]

FZ3C ¼ g � ð/1;U;/2Þ

0 � /1 < 2p

0 � U <
p
2

0 � /2 <
p
2

���������

���������

8>>><
>>>:

9>>>=
>>>;

(5)

The threefold redundancy refers to the fact that each physically
distinctive lattice orientation appears 3 times in FZ3C. Further
reduction to the point that each distinctive orientation appears
only one time is possible, but the inconvenience is that the funda-
mental zone contains a complex surface, which renders partition-
ing difficult. Experience dictates that it is easier to work with the
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rectangular threefold redundant fundamental zone described by
Eq. (5). From the experimental point of view, each EBSD-based
measurement of lattice orientation will occur 3 times in FZ3C.

The rectangular shape of FZ3C can be split into smaller bins of
regular, rectangular shape. All computations of the type required
in Eq. (3) will be handled discretely, using binned datasets. Sup-
pose that N such bins have been defined, and designated by xn,
where

xn � FZ3C;
[N
n¼1

xn ¼ FZ3C; xn \ xm ¼ � ðm 6¼ nÞ (6)

Associated with each bin xn is an indicator function vn(g), defined
by the expression

vnðgÞ � vnð/1;U;/2Þ
1; if g 2 xn

0; otherwise

�
(7)

The size of the bins will have an effect upon the errors in forming
the averages required by the Hill estimates of effective elastic
stiffness.

The pertinent local state distribution is the distribution of lattice
orientation among the sampled material points. Imagine that a
total of S local orientations have been measured by EBSD-based
methods. A condition of statistical sufficiency is assumed for this
set of measurements. Roughly, this means that the measurements
are taken in a sufficiently large number of components of micro-
structure (grains) to ensure that the experimental sampling is char-
acteristic of the overall microstructure. After converting each of
the S measurements of orientation into its three equivalent orienta-
tions within FZ3C, the 3S determined orientations will be distrib-
uted among the N defined bins. Let fn denote the fraction of 3S
orientations that fall within xn:

f n ¼ 1

3S

X3S

s¼1

vnfgsg (8)

The local state distribution function, in this case closely related to
the orientation distribution function, will consist in the set of real
number fractions f n;F ¼ f 1; f 2;…; f N

� �
. Clearly, from Eq. (8)

conservation of volume requires that

XN

n¼1

f n ¼ 1 (9)

Approximations to the average elastic tensors required in Eq. (3)
are readily formed from the local state distribution function via
expressions of the form

�Cijkl �
XN

n¼1

f nCn
ijkl (10)

where Cn denotes the value of the elastic stiffness calculated by
Eq. (4) with /1, U, and /2 taken to be a characteristic lattice ori-
entation lying within the associated bin xn. Numerical examina-
tion of the bin-size dependency of calculations like Eq. (10) have
determined that numerical errors are 	1% when a bin size of
5
 � 5
 � 5
 in the three Euler angles is selected within FZ3C;
consequently, this bin size was utilized throughout the present
work.

2.3 Taylor-Bishop-Hill Model. Since its introduction in
1938, the Taylor [6] first-order upper bound on the yield strength
of rigid elastic (elastic strains are ignored), perfectly-plastic
(strain hardening is not considered) polycrystals [15] has been
widely applied to the problem of yielding. Of course these simpli-
fied conditions do not accurately reflect the heterogeneous nature

of elastic=plastic behavior in polycrystals at the yield point.
Essential to the Taylor model is the approximation that all crystal-
lites or grains are subject to the same plastic strain. In the original
theory, plastic deformation is constrained to occur by shear on
specified slip systems, and the required plastic shear strains on
these slip systems are discovered. In FCC materials like Cu, which
has 12 {111}h110i slip systems, a large number of choices of five
slip systems (required to accommodate an arbitrary incompressi-
ble plastic deformation) can be discovered from among the 12
available slip systems. At this point Taylor postulates that the cor-
rect combination will be the set that accomplishes the required de-
formation with the least amount of total shear: the so-called
minimum work criterion. (Those practiced in the Taylor model
will recall that it is often the case that there remains a redundancy
in the available sets of slip accommodation. Several choices
remain with the same minimum work condition. However, for
consideration of yield strength alone, this redundancy is of no fur-
ther interest.)

The question naturally arose after the emergence of the Taylor
model, as to whether or not actual homogeneous stress conditions
could be discovered that would activate any particular required set
of slip systems for yielding. Thus came the Bishop-Hill model in
1951 [7,8]. It was discovered that for FCC materials a set of 56
stress states are capable of activating the required combinations of
slip for an arbitrary plastic deformation. These 56 stress states are
also known as stress corners, because they form the vertices of a
convex polytope, which is the yield surface in 5D deviatoric stress
space. A maximum work criterion was presented for correctly
identifying the pertinent stress corner associated with any particu-
lar impressed plastic strain. Later Chin and Mammel showed that
the Taylor and Bishop-Hill models are dual solutions to the same
linear problem [16]. For this reason some authors refer to these
two complimentary models as the Taylor-Bishop-Hill (TBH)
model.

These 56 vertices or corners of the yield surface for FCC crys-
tals can be grouped into five different types: the first three groups
activate eight slip systems simultaneously; and the second and
third groups activate six slip systems [7,17]. According to the
TBH model, a slip system is only activated when the resolved
shear stress meets or exceeds sCRSS. It is also found that the
resolved shear stress upon the nonactive slip systems is zero [17].
Appendix B lists 28 of the 56 TBH corner stress states; the
remaining 28 are simply related to the first 28 by a minus sign.

According to the TBH model, each grain experiences the uni-
form (macroscopic) imposed strain. TBH theory hypothesizes that
the active corner stress state is the one that maximizes the work
done. If the local corner stress is rC, and the imposed strain incre-
ment is d�, then the increment of plastic work, dWp for any partic-
ular choice of stress corner will be

dWp ¼ rC
ij ðxÞdeijðxÞ (11)

The correct choice for the active stress corner, within the TBH
model, is the one that maximizes dWp.

First-order estimates of the TBH upper-bound on the yield
strength in polycrystals can be computed from the S measure-
ments of lattice orientation, g(x), according to the following
expression:

�rY
ij �

XN

n¼1

f nrCn
ij ðdeÞ (12)

Here d� is the imposed plastic strain increment, �rYðdeÞ is the pre-
dicted macroscopic yield stress associated with the selected plastic
strain increment, and rCn(d�) is the correct TBH stress corner
associated with bin n and the imposed plastic strain increment,
according to Eq. (11). (Note that it is essential that all terms in Eq.
(12) be expressed in the macroscopic or specimen coordinate
frame.)
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2.4 Estimation of sCRSS from the TBH Model. The corner
stress states required to implement the yield stress estimation
expressed in Eq. (12) require knowledge of sCRSS. A particular
way of estimating the sCRSS has been used, and will be briefly
described here. It is assumed that experimental uniaxial tensile
testing has been conducted on each material of interest.

Tensile samples are cut to a geometry, and loaded in such away
that to a first approximation only a single tensile component of the
stress can be present in the gage section of the sample. We desig-
nate this tensile axis as the ê1 direction, with the two transverse
directions being ê2 and ê3. If the tensile testing is conducted with
ê1 aligned with any one of the principal axes of material micro-
structure, then it is reasonable to expect that the plastic strain in-
crement in the gage section to have a diagonal form that can be
expressed as

de � de11

1 0 0

0 �g 0

0 0 �ð1� gÞ

2
4

3
5 (13)

where g is the contractile (plastic) strain ratio, g ¼ e22

e11
. In principle

this contractile strain ratio can be measured in the tensile sample
after yielding has occurred, when the load has been removed from
the sample. Once the relevant contractile strain ratio is known, the
appropriate strain increment is known, and Eq. (12) can be used to
estimate the uniaxial yield strength, �rY

11. This estimate scales line-
arly with sCRSS, and adjustments in sCRSS can be pursued until �rY

11

matches with the experimentally measured yield stress. This is the
basic approach.

In practice it is difficult to measure the plastic contractile strain
ratio at initial yielding, because the plastic strains involved are
small, 	10�3. One approach to overcome this is to deform the
sample to larger deformations, and then to assume that the con-
tractile strain ratio observed at these larger strains will be repre-
sentative of the one at smaller strains. The limitations of this
approach are obvious. Another approach, which is numerical, is to
take the contractile ratio to be a variable, and then to calculate the
estimate of the yield stress tensor for each selected choice of the
ratio. When the predicted stress state is as close as possible to the
uniaxial condition, it can be assumed that the correct contractile
ratio has been discovered. This approach is equivalent to minimiz-
ing the average overall plastic work increment, dWp. In the pres-
ent work, this latter approach has been taken.

2.5 Determination of Elastic-Yield Property Closures. Interest
in the complete range of elastic=yield property combinations that
could occur within all conceivable polycrystalline microstructures
of fixed material phase typically occurs during preliminary design.
Theoretical methods for constructing estimates of properties clo-
sures have been presented in the literature [11,18–20]. The
approach taken is to make use of available microstructure-sensi-
tive homogenization relations for the properties of interest, and
then to consider all possible microstructures, beginning with sin-
gle crystals of an arbitrary lattice orientation. Details of this
approach are not given here; but the interested reader will find the
methods detailed in the referenced literature [11,18–20]. Of inter-
est in this paper is a limited, or accessible properties closure,
comprising the portion of the full elastic=yield closure that is
readily accessible with ordinary materials processing.

2.6 Anisotropic Properties of Orthotropic Plates Contain-
ing Circular Holes. As an example of a simple anisotropic
design problem, where microstructure considerations are of para-
mount importance, the classical problem of a hole in an aniso-
tropic plate will be revisited. The detailed mechanics of plates
containing a circular hole, and with microstructures exhibiting
orthorhombic symmetry, was presented by Lekhnitskii [12]. Con-
sidering an infinite plate, loaded under uniaxial in-plane tension in
an arbitrary direction with respect to a selected principal axis of

material orthorhombicity, the tensile stress tangential to the inner
surface of the hole is given by the expression:

rh ¼ p
Eh

E1

f½�cos2/þ ðk þ nÞsin2/�kcos2h

þ ½ð1þ nÞcos2/� ksin2/�sin2h

� nð1þ k þ nÞ sin / cos / sin h cos hg (14)

In this expression p is the applied stress, exerted a large distance
away from the circular hole. h defines an angle relative to the
selected principal material axis (taken to be the rolling direction
in this work) that identifies the location of a point on the circum-
ference of the circular hole. This is defined to be the tensile stress
tangential to the point of circumference identified by h. Finally, /
denotes the direction of the applied stress with respect to the prin-
cipal material axis. Other components in Eq. (14) are defined by
the expressions

1

Eh
¼ sin4h

E1

þ 1

G
� 2�1

E1

� �
sin2hcos2hþ cos4h

E2

k ¼
ffiffiffiffiffi
E1

E2

r

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

E1

E2

� �1 þ
E1

G

r
(15)

The symbol �1 represents Poisson’s ratio perpendicular to the
principal material axis, E1 and E2 represent Young’s modulus in
the rolling and transverse directions of the sheet, respectively, and
G is the in-plane shear modulus. Given the traction-free condition
at the circumference of the hole, and the other geometrical and
boundary conditions, rh is the only nonzero component of stress
that can occur adjacent to the circular hole. Estimates for each of
these effective elastic properties are accessible by calculations of
the Hill average properties, using Eqs. (3) and (10).

Predictions of rh, taken from Eq. (14), will be compared to esti-
mates of the yield strength, which also varies with h, in order to
establish the maximum value of the tensile load p that can applied
to the plate without causing yielding. The design problem reduces
to the matter of determining, for any particular material, the peak
load that can be applied and the direction / in which it must be
applied. Figure 1 depicts the essential geometrical definitions for
the anisotropic hole-in-the-plate problem.

3 Proposed Hybrid Bishop-Hill Model

In most yield limited design problems the interest is in the near-
vicinity of the yield surface, where the plastic strain is not domi-
nant compared with the elastic strain. If the spatial character of
the strain state is considered, it is not constant, but varies with
position in complex ways. These conditions call to question the

Fig. 1 A geometry of anisotropic hole-in-plate problem
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application of the TBH model for the problem of initial yielding.
For plastic problems where the total strain is dominated by the
plastic component, this is not an issue.

Our present purpose is to propose a modified version of the
TBH model, which will be named the Hybrid Bishop-Hill Model
(HBH model). Importantly, the focus of the HBH model is on the
applied stress, rather than on the plastic strain; this makes the
model much more accessible to design engineers who focus more
upon stress states, rather than strain states. The algorithm for pre-
dicting the yield strength of the polycrystalline material via the
HBH model uses the same stress corners that were defined for the
TBH model. Retaining this characteristic means that there will be
a natural heterogeneity of local stress among the constituents of
the polycrystal.

A simple assumption is taken that the local yielding at any posi-
tion in the material occurs at that corner stress state, r̂C

ij , that lies
“closest” to the macroscopic stress, r̂ij. The “hat” over the stress
symbols signifies the deviatoric stress. Distance between these
two stress states is defined by dij, where

dij ¼ r̂c
ij � r̂ij (16)

The magnitude of distance between stress states, d, is defined by
the Euclidean norm

jjd2jj ¼ dijdij (17)

Importantly, the distance defined according to Eqs. (16) and (17)
is invariant with respect to coordinate transformation. The selec-
tion of stress corner for any particular component (grain) within
the polycrystal is taken to be the Bishop-Hill corner stress that
minimizes the distance d between the applied stress and the corner
stress state.

The estimated (deviatoric) yield strength of the material is
obtained from the expression

r̂Y
ij �

XN

n¼1

f nr̂Cn
ij (18)

r̂Cn denotes the pertinent stress corner associated with bin n in
FZ3C. Note that all corner stress states exercised in Eq. (18) must
be expressed in the macroscopic (sample) frame in order to inter-
pret r̂Y

ij as the yield strength. Whereas yield strength is customar-
ily described as the full Cauchy stress, the deviatoric yield stress
must be converted, using the customary definition

rY
ij ¼ r̂Y

ij þ
1

3
dijr

Y
kk ðsummation over k impliedÞ (19)

Exercising Eq. (20) to obtain rY
ij requires additional physical infor-

mation about the applicable pressure 1
3
dijrY

kk or some other charac-

teristic of the normal components of rY
ij If, for example, the

calculations involve estimates of a uniaxial tensile test, then only

one component of rY
ij is expected to be nonzero; and in this case a

pressure term 1
3
dijrY

kk can be applied that renders rY
ij as close as

possible to a uniaxial stress condition. This is the approach taken
in the present work.

Fig. 2 Property Closure

Table 1 Sample description

Sample
description

Heat treatment
temperature (
C)

Heat treatment
time (Hour)

As received N=A N=A
As received and annealed 191 1
98% cold worked N=A N=A
98% cold worked and recrystallized 225 0.5
58% cold worked N=A N=A
58% cold worked and annealed 160 1
58% cold worked and recrystallized 225 1.5
Cube texture N=A N=A
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Recall that the corner stress states of the TBH model are states
that are capable of supporting general local states of plastic strain.
Consistent with the classical Taylor model, the TBH model
defines stresses that are capable of causing an arbitrary plastic
strain state, by {111}h110i dislocation slip. The TBH model does
not satisfy the stress equilibrium condition, although when the
macroscopic plastic strain is imposed upon each individual grain

within the material, strain compatibility is fulfilled in a trivial
sense. The new HBH model fulfills neither stress equilibrium, nor
strain compatibility at a local level. However, having utilized the
TBH stress corners in the model to estimate local stress condi-
tions, it can be anticipated that complex plastic strain conditions,
as required by the equilibrium and compatibility requirements
under elastic=plastic loading, could more readily be satisfied by

Fig. 3 A variation in yield strength with respect to the applied tensile load direction in aniso-
tropic plates

Table 2 Comparison of experimentally obtained tensile yield strength vs the numerically obtained yield strength

Samples
Contractile strain

ratio (H)
Experimental tensile
yield strength (MPa)

The TBH yield
strength (MPa)

The HBH yield
strength (MPa)

As received 0.51 185.40 201.74 181.07
As received and annealed 0.49 185.67 204.05 182.10
98% cold worked 0.43 423.48 436.15 400.95
98% cold worked and recrystallized 0.52 71.93 77.83 69.67
58% cold worked 0.36 377.10 401.11 363.53
58% cold worked and annealed 0.39 363.93 391.08 354.06
58% cold worked recrystallized 0.54 65.43 72.14 63.97
Cube texture 0.39 33.76 50.56 27.65
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the stress corners. To some extent the HBH model could be com-
pared to the relaxed-constraints model(s) that preserve some fea-
tures of Taylor-like models, but do not strictly enforce either
strain compatibility or stress equilibrium [21].

The basic relations pertaining to the HBH model (Eqs.(16)–(18))
can be applied to arbitrarily complex loading states.

4 Results and Discussions

4.1 Database of OFE Copper Materials. It will be obvious
to those familiar with materials processing, that the range of
microstructures that are readily accessible to the designer com-
prise a range of properties that is much smaller than the set con-
sidered by the theoretical properties closure, briefly described in
Sec. 2.5 above. A limited, accessible closure for elastic=yield
properties has been considered for OFE Cu. Three common proc-
essing routes have been considered: rolling deformation, thermal
annealing, and rigid body rotation of the material about the nor-
mal direction to the rolling plane. Rolled OFE Cu plate (in the as-
received “half-hard” condition), and six derivative materials pro-
duced there-from by secondary processing steps, and one addition
material (very strongly “cube textured,” provided by Oak Ridge
National Laboratory), were considered in the database. Table 1
describes the processing conditions for each of these samples.

Theoretically, each of these eight materials within the
“accessible” database, were then allowed to rotate around their
plane normal, in order to compute the accessible properties clo-
sure. The local state distribution can easily be recomputed for an
arbitrary rotation angle, and then Eqs. (10) and (12) can be reexer-
cised to recover the changed estimates for elastic and yielding
properties. Rotations of the sample relative to the loading gives
rise to orbits in the properties closure. Further details of this
approach are provided in the 2008 paper of Adams et al. [18]. The
complete and accessible closure for rY

h (in-plane uniaxial yield
strength in direction ĥ ) versus Eh (Young’s modulus associated
with the same in-plane direction) is shown in Fig. 2. The reader

should note that E1 in Eqs. (14) and (15) is related to this notation
by E1¼E0¼Eh=0 and E2¼Ep/2¼Eh=p/2.

4.2 Comparison of HBH and TBH Models. An accessible
comparison is here detailed for the predictions of yield strength
for the eight OFE Cu materials included in the database of this
study. The comparison is between predictions based upon the
classical TBH and the new HBH models.

Appendix A contains the {111} and {200} crystallographic
pole figures for each material of the database. These were
obtained from EBSD data sets comprising a minimum of 2500
grains for each sample (excluding the “cube textured” material,
which has a large grain size). The peak value for the texture of
these materials was measured to be in excess of 37 “times-ran-
dom,” for the cube-textured, sample, for the {100}h001i compo-
nent. Most of the other materials exhibited the classical rolling
texture, [22] with peak times-random values ranging from 1.6 in
the as-received material, upwards to 5.5 in the 98% cold worked
sample. It is evident that upon annealing the 98% cold rolled ma-
terial, a {100}h001i cube component develops with an intensity
of	 3.7 times random.

Standard tensile testing was conducted for the purpose of recov-
ering the yield strength in the rolling direction, RD, in each sample.
(The yield strengths reported are the typically average values from
three tensile tests.) Using the numerical approach described in Sec.
2.4 above, the contractile strain ratio g was varied in connection
with Eqs. (11) and (12) until the macroscopic increment of plastic
work, d �Wp, estimated from the TBH model, was minimized. Using
this estimate for the strain increment, sCRSS was estimated from the
Taylor factor, the yield strength, estimated from the TBH model,
was recorded. This was compared with the yield strengths predicted
for the same materials using the HBH model, by taking the applied
stress to be a uniaxial tensile stress in RD. The results of this com-
parison are shown in Table 2. It is evident that in most instances the
new HBH model more accurately predicts the yield strength in
comparison with the TBH model.

Fig. 4 The stress states around a circular hole in 98% cold worked plate. The solid
line indicates the yield surface of the material, and the dotted line indicates the
stress states around the hole. When the stress states (rh) touch the yield surface
rY

h

	 

, the material is considered to be yield. The applied stress is along the sample

rolling direction.
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4.3 HBH-Based Design for the Anisotropic Hole-In-The-
Plate Problem. First, consider the plate without a hole. Variation
of the uniaxial yield strength, rY

/ with direction of the applied
load, /, is shown in Fig. 3 for each of the eight materials within
the database. The natural variation of yield strength is as small as
	1% in the as-received and as-received annealed materials, to
	33% in the strongly cube-textured material. In terms of absolute
strength, it is not unexpected that the lowest values of strength are
found in the most heavily annealed materials, and the highest val-
ues are seen in the most heavily cold-worked material. The range
of strength is from	 30 to 425 MPa.

Next, consider plates containing a circular hole, loaded under
uniaxial tension. The simple stress states around the circumference
of the hole, are purely uniaxial; and they act in a tangential direc-
tion relative to the circumference of the hole. This is expressed by
Eqs. (14) and (15). This stress state can be compared with the theo-
retical yield stress in the same direction, as determined using the
HBH model. Note that rh depends linearly upon the magnitude of
the stress p applied in direction /; and the magnitude of rh

depends on both variables, / and h. In this paper, we have taken
the liberty of describing two kinds of uniaxial stress, r/ and rh. In
the first case r/ denotes a uniaxial stress aligned with the direction

defined by /; and with respect to the hole-in-the-plate problem,
r/¼ p. rh, however, in the context of the hole-in-the-plate prob-
lem, is the tangential stress acting at the point identified by h on
the circumference of the circular hole, as shown in Fig. 1, evi-
denced by Eqs. (14) and (15), rh =rh(p,/). The distinction between
r/ and rh is that the former is parallel to the direction defined by
/, and the latter is perpendicular to the direction specified by h.
When the superscript Y is used, as with rY

/ or rY
h what is meant is

the uniaxial yield strength of the material in the same sense as the
stress state.

Figure 4 compares the h—dependent yield strength, rY
h versus

the stress state around the circumference of the circular hole for
the 98% cold-worked OFE Cu plate. For this example / was cho-
sen to be 0 (i.e., along RD), and the magnitude of the applied
stress, p, was taken at a level that just causes these two curves to
touch one another at h¼ 30 and 210 deg, at a stress level of 398
MPa. For stress levels that exceed this it is predicted that plastic
yield will occur, first at these two circumferential angles, and then
later at other locations associated with minima in the yield
strength curve. Note that changes in the angle / of application of
the applied stress p will change the form of rh. Peak performance
in design with plates containing circular holes will consist in

Fig. 5 A variation in yield strength with respect to the applied tensile load direction in aniso-
tropic plates with a circular hole
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identifying the direction / at which the largest p can be applied
without causing plastic yielding at any position h about the hole.

This same analysis can be performed for all of the plate types
found in the database, and the peak value of p, at each direction /
in the plate, at which yielding first occurs, can be identified. Let
pY

/ denote the applied load in direction / where yielding begins.
This behavior is shown in Fig. 5.

Likewise the minimum performance can also be obtained using
the same approach, but noting the lowest performance. This mini-
mum performance is interesting from the point of view that an
uninformed designer could inadvertently load a plate with circular
hole in the direction where minimum strength would be realized.
Another way to look at the maximum and minimum performance
is in terms of the associated stress concentration factors. An aniso-
tropic stress concentration factor, Kt can be defined as the
following:

Kt ¼
max rh

pY
/

(20)

where max rh signifies the peak value of rh that occurs around the
circumference of the hole at the applied load at which yielding
occurs, pY

/. For isotropic materials Kt becomes 3, but for aniso-
tropic materials it can be larger or smaller than 3. A complete list-
ing of the predicted maximum and minimum performance levels,
their associated yield strengths pY

/ and the angles of load applica-
tion, and their related stress concentration factors, is presented in
Table 3.

The reader will note that a wide range of Kt is associated with
the predicted maximum and minimum performance conditions
among the materials of the database. The predicted range is
2.15<Kt< 3.96, or nearly a factor of 2.

5 Conclusion

This paper presents a new approach to first-order yield limited
elastic=plastic design, by introducing the Hybrid Bishop-Hill
model for yielding. The HBH model retains the distinctive corner
stress states defined for FCC crystals by the classical Taylor
Bishop-Hill model, but differs in focusing the choice of corner
stress state upon the macroscopic applied stress. In a comparison
between the TBH and HBH models, undertaken for a database of
eight distinctive OFE Cu materials, it was demonstrated that the
HBH model performed markedly better than the TBH model
when compared with experimentally measured yield strengths. A
complete properties closure for in-plane uniaxial yield strength
versus Young’s modulus was presented, and compared with an ac-

cessible property closure for the database of eight OFE Cu materi-
als. In addition to the varied secondary processing by thermal-
mechanical treatment, rigid body rotation of these sheet materials,
about the sheet normal, was considered. The variation of yield
strength and Young’s modulus with rotation define orbits within
the properties closure. These orbits were detailed in the accessible
property closure. In order to illustrate the application of the new
HBH model to a yield limited design problem of general interest,
the problem of yielding in anisotropic plates containing circular
holes was considered. Anisotropic plate theory predicts that the
location of stress concentration is dependent on material micro-
structure such that the stress concentration is not necessary located
at 90 deg off the applied tensile load axis, as in the isotropic plate
theory, but varies with material microstructure and loading direc-
tion in the plate. By identifying the optimal (and critical) direc-
tions of the applied tensile load, the designer can improve the
performance of plates as much as 62%. In the identified optimal
direction it is predicted that the applied stress at yield is about
40% of the tensile yield strength in the rolling direction, except
for the cube-textured material; the minimum performance, associ-
ated with the critical direction, is typically about 25% of the ten-
sile strength. The cube textured plate shows a unique quality
among the samples studied in this paper. Both the optimal and
critical performance of plate with a circular hole is about 40% of
the yield strength in the nonperforated plate. The difference in
yield strength between the optimal and critical directions is the
smallest in cube textured anisotropic plates containing a circular
hole; i.e., the material exhibits a weak directional dependence on
applied load direction. This paper has presented a new approach
to improve the performance of simple mechanical parts by incor-
porating material microstructure information into a stress-centric
framework. Since the stress is much more accessible than the
plastic strain, near the yield point of the material, the new
approach facilitates a much easier approach to yield limited
design. As an example of the application of the new yield theory,
we have shown that the locations of stress concentration, the opti-
mal=critical applied load directions, and the readily accessible
direction-dependent yield strength predictions aid the design for
improvement of overall performance of plates containing a circu-
lar hole.
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Table 3 The performance of anisotropic plates with a circular hole

Samples Performance
Stress

concentration (Kt)
Applied tensile

yield strength ðpY
/Þ (MPa)

Angles from the sample
rolling direction (degrees)

As received Max 2.54 71.05 0, 90
Min 3.86 46.80 45, 135

As received and annealed Max 2.54 71.58 0, 90
Min 3.87 46.90 45, 135

98% cold worked Max 2.44 162.99 0, 90
Min 3.96 100.89 45, 135

98% cold worked and recrystallized Max 2.49 27.91 0, 90
Min 3.88 18.04 45, 135

58% cold worked Max 2.46 147.82 0, 90
Min 3.73 97.40 45, 135

58% cold worked and annealed Max 2.49 142.37 0, 90
Min 3.74 94.64 45, 135

58% cold worked recrystallized Max 2.54 25.17 0, 90
Min 3.88 16.36 45, 135

Cube texture Max 2.15 13.06 82.5
Min 2.31 11.95 157.5
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Appendix A: Pole Figures for the Database

Fig. 6 (a) As-received. Maximum intensity: 1.639 3 random and (b) as-received
and annealed. Maximum intensity: 1.748 3 random.

Fig. 7 98% cold worked. Maximum intensity: 5.534 3 random and (b) 98% cold
worked and recrystallized. Maximum intensity: 3.714 3 random.

Fig. 8 (a) 58% cold worked. Maximum intensity: 3.390 3 random, (b) 58% cold
worked and annealed. Maximum intensity: 2.827 3 random, and (c) 58% cold
worked and recrystallized. Maximum intensity: 2.816 3 random.
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Appendix B: TBH Corner Stress States

Table 4 TBH corner stress states
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